mirror of
				https://github.com/hiyouga/LLaMA-Factory.git
				synced 2025-11-04 18:02:19 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			178 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			178 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright 2025 the LlamaFactory team.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
from typing import TYPE_CHECKING, Union
 | 
						|
 | 
						|
from transformers.integrations import is_deepspeed_zero3_enabled
 | 
						|
 | 
						|
from ...extras.misc import check_version
 | 
						|
 | 
						|
 | 
						|
if TYPE_CHECKING:
 | 
						|
    from torch import nn
 | 
						|
    from transformers import PretrainedConfig, PreTrainedModel
 | 
						|
 | 
						|
    from ...hparams import ModelArguments
 | 
						|
 | 
						|
 | 
						|
def _set_z3_leaf_modules(model: "PreTrainedModel", leaf_modules: list[Union["nn.Module", str]]) -> None:
 | 
						|
    check_version("deepspeed>=0.13.0")
 | 
						|
    from deepspeed.utils import set_z3_leaf_modules  # type: ignore
 | 
						|
 | 
						|
    set_z3_leaf_modules(model, leaf_modules)
 | 
						|
 | 
						|
 | 
						|
def add_z3_leaf_module(model: "PreTrainedModel") -> None:
 | 
						|
    r"""Set module as a leaf module to skip partitioning in deepspeed zero3."""
 | 
						|
    if not is_deepspeed_zero3_enabled():
 | 
						|
        return
 | 
						|
 | 
						|
    model_type = getattr(model.config, "model_type", None)
 | 
						|
    text_config = getattr(model.config, "text_config", None)
 | 
						|
    text_model_type = getattr(text_config, "model_type", None)
 | 
						|
 | 
						|
    if model_type == "dbrx":
 | 
						|
        from transformers.models.dbrx.modeling_dbrx import DbrxFFN
 | 
						|
 | 
						|
        _set_z3_leaf_modules(model, [DbrxFFN])
 | 
						|
 | 
						|
    if model_type == "deepseek_v2":
 | 
						|
        # deepseek v2 uses custom code
 | 
						|
        _set_z3_leaf_modules(model, ["DeepseekV2MoE"])
 | 
						|
 | 
						|
    if model_type == "deepseek_v3" or model_type == "kimi_vl":
 | 
						|
        # deepseek v3 and kimi vl use custom code
 | 
						|
        _set_z3_leaf_modules(model, ["DeepseekV3MoE"])
 | 
						|
 | 
						|
    if model_type == "ernie4_5_moe":
 | 
						|
        from transformers.models.ernie4_5_moe.modeling_ernie4_5_moe import Ernie4_5_MoeSparseMoeBlock
 | 
						|
 | 
						|
        _set_z3_leaf_modules(model, [Ernie4_5_MoeSparseMoeBlock])
 | 
						|
 | 
						|
    if model_type == "granitemoe":
 | 
						|
        from transformers.models.granitemoe.modeling_granitemoe import GraniteMoeMoE
 | 
						|
 | 
						|
        _set_z3_leaf_modules(model, [GraniteMoeMoE])
 | 
						|
 | 
						|
    if model_type == "glm4_moe":
 | 
						|
        from transformers.models.glm4_moe.modeling_glm4_moe import Glm4MoeMoE
 | 
						|
 | 
						|
        _set_z3_leaf_modules(model, [Glm4MoeMoE])
 | 
						|
 | 
						|
    if model_type == "glm4v_moe":
 | 
						|
        from transformers.models.glm4v_moe.modeling_glm4v_moe import Glm4vMoeTextMoE
 | 
						|
 | 
						|
        _set_z3_leaf_modules(model, [Glm4vMoeTextMoE])
 | 
						|
 | 
						|
    if model_type == "jamba":
 | 
						|
        from transformers.models.jamba.modeling_jamba import JambaSparseMoeBlock
 | 
						|
 | 
						|
        _set_z3_leaf_modules(model, [JambaSparseMoeBlock])
 | 
						|
 | 
						|
    if model_type == "jetmoe":
 | 
						|
        from transformers.models.jetmoe.modeling_jetmoe import JetMoeMoA, JetMoeMoE
 | 
						|
 | 
						|
        _set_z3_leaf_modules(model, [JetMoeMoA, JetMoeMoE])
 | 
						|
 | 
						|
    if model_type == "llama4":
 | 
						|
        from transformers.models.llama4.modeling_llama4 import Llama4TextMoe
 | 
						|
 | 
						|
        _set_z3_leaf_modules(model, [Llama4TextMoe])
 | 
						|
 | 
						|
    if model_type == "mixtral":
 | 
						|
        from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
 | 
						|
 | 
						|
        _set_z3_leaf_modules(model, [MixtralSparseMoeBlock])
 | 
						|
 | 
						|
    if model_type == "olmoe":
 | 
						|
        from transformers.models.olmoe.modeling_olmoe import OlmoeSparseMoeBlock
 | 
						|
 | 
						|
        _set_z3_leaf_modules(model, [OlmoeSparseMoeBlock])
 | 
						|
 | 
						|
    if model_type == "phimoe":
 | 
						|
        from transformers.models.phimoe.modeling_phimoe import PhimoeSparseMoeBlock
 | 
						|
 | 
						|
        _set_z3_leaf_modules(model, [PhimoeSparseMoeBlock])
 | 
						|
 | 
						|
    if model_type == "qwen2_moe":
 | 
						|
        from transformers.models.qwen2_moe.modeling_qwen2_moe import Qwen2MoeSparseMoeBlock
 | 
						|
 | 
						|
        _set_z3_leaf_modules(model, [Qwen2MoeSparseMoeBlock])
 | 
						|
 | 
						|
    if model_type == "qwen3_moe" or text_model_type == "qwen3_moe":  # internvl 3.5
 | 
						|
        from transformers.models.qwen3_moe.modeling_qwen3_moe import Qwen3MoeSparseMoeBlock
 | 
						|
 | 
						|
        _set_z3_leaf_modules(model, [Qwen3MoeSparseMoeBlock])
 | 
						|
 | 
						|
    if model_type == "qwen3_vl_moe":
 | 
						|
        from transformers.models.qwen3_vl_moe.modeling_qwen3_vl_moe import Qwen3VLMoeTextSparseMoeBlock
 | 
						|
 | 
						|
        _set_z3_leaf_modules(model, [Qwen3VLMoeTextSparseMoeBlock])
 | 
						|
 | 
						|
    if model_type == "qwen3_omni_moe":
 | 
						|
        from transformers.models.qwen3_omni_moe.modeling_qwen3_omni_moe import Qwen3OmniMoeThinkerTextSparseMoeBlock
 | 
						|
 | 
						|
        _set_z3_leaf_modules(model, [Qwen3OmniMoeThinkerTextSparseMoeBlock])
 | 
						|
 | 
						|
 | 
						|
def configure_moe(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
 | 
						|
    if not is_trainable or not model_args.moe_aux_loss_coef:
 | 
						|
        return
 | 
						|
 | 
						|
    model_type = getattr(config, "model_type", None)
 | 
						|
    text_config = getattr(config, "text_config", None)  # for multimodal model
 | 
						|
 | 
						|
    if model_type in [
 | 
						|
        "dbrx",
 | 
						|
        "ernie4_5_moe",
 | 
						|
        "granitemoe",
 | 
						|
        "jamba",
 | 
						|
        "jetmoe",
 | 
						|
        "llama4",
 | 
						|
        "mixtral",
 | 
						|
        "olmoe",
 | 
						|
        "phimoe",
 | 
						|
        "qwen2_moe",
 | 
						|
        "qwen3_moe",
 | 
						|
    ]:
 | 
						|
        setattr(config, "output_router_logits", True)
 | 
						|
 | 
						|
    if text_config and getattr(text_config, "model_type", None) in [
 | 
						|
        "glm4v_moe_text",  # glmv4_5
 | 
						|
        "qwen3_moe",  # internvl_3_5
 | 
						|
    ]:
 | 
						|
        setattr(text_config, "output_router_logits", True)
 | 
						|
 | 
						|
    if model_type in [
 | 
						|
        "ernie4_5_moe",
 | 
						|
        "granitemoe",
 | 
						|
        "jamba",
 | 
						|
        "llama4",
 | 
						|
        "mixtral",
 | 
						|
        "olmoe",
 | 
						|
        "phimoe",
 | 
						|
        "qwen2_moe",
 | 
						|
        "qwen3_moe",
 | 
						|
    ]:
 | 
						|
        setattr(config, "router_aux_loss_coef", model_args.moe_aux_loss_coef)
 | 
						|
 | 
						|
    elif text_config and getattr(text_config, "model_type", None) in ["qwen3_moe"]:
 | 
						|
        setattr(text_config, "router_aux_loss_coef", model_args.moe_aux_loss_coef)
 | 
						|
 | 
						|
    elif model_type == "deepseek":
 | 
						|
        setattr(config, "aux_loss_alpha", model_args.moe_aux_loss_coef)
 | 
						|
 | 
						|
    elif model_type == "jetmoe":
 | 
						|
        setattr(config, "aux_loss_coef", model_args.moe_aux_loss_coef)
 |