mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-03 04:02:49 +08:00
38 lines
1.2 KiB
Python
38 lines
1.2 KiB
Python
import os
|
|
|
|
from transformers.utils import is_flash_attn_2_available, is_torch_sdpa_available
|
|
|
|
from llamafactory.hparams import get_infer_args
|
|
from llamafactory.model import load_model, load_tokenizer
|
|
|
|
|
|
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-LlamaForCausalLM")
|
|
|
|
|
|
def test_attention():
|
|
attention_available = ["off"]
|
|
if is_torch_sdpa_available():
|
|
attention_available.append("sdpa")
|
|
|
|
if is_flash_attn_2_available():
|
|
attention_available.append("fa2")
|
|
|
|
llama_attention_classes = {
|
|
"off": "LlamaAttention",
|
|
"sdpa": "LlamaSdpaAttention",
|
|
"fa2": "LlamaFlashAttention2",
|
|
}
|
|
for requested_attention in attention_available:
|
|
model_args, _, finetuning_args, _ = get_infer_args(
|
|
{
|
|
"model_name_or_path": TINY_LLAMA,
|
|
"template": "llama2",
|
|
"flash_attn": requested_attention,
|
|
}
|
|
)
|
|
tokenizer = load_tokenizer(model_args)
|
|
model = load_model(tokenizer["tokenizer"], model_args, finetuning_args)
|
|
for module in model.modules():
|
|
if "Attention" in module.__class__.__name__:
|
|
assert module.__class__.__name__ == llama_attention_classes[requested_attention]
|