LLaMA-Factory/examples/kt_optimize_rules/Qwen3Moe-sft-amx.yaml
2025-11-27 02:08:36 +08:00

81 lines
2.7 KiB
YAML

- match:
class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.RotaryEmbedding
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^lm_head$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
# - match:
# name: "^model\\.layers\\..*$" # regular expression
# class: torch.nn.Linear # only match modules matching name and class simultaneously
# replace:
# class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
# kwargs:
# generate_device: "cuda"
# prefill_device: "cuda"
# generate_op: "KLinearTorch"
# prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.(?!.*mlp\\.shared_expert_gate).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.mlp$"
replace:
class: ktransformers.operators.experts.KQwen3MoeSparseMoeBlock # mlp module with custom forward function
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KSFTExpertsCPU"
out_device: "cuda"
backend: "AMXInt8" # or "AMXBF16" or "AMXInt8"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.attention.KQwen3MoeAttention # optimized MLA implementation
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KQwen3MoeModel"
kwargs:
per_layer_prefill_intput_threshold: 0