mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-04 04:32:50 +08:00
76 lines
2.9 KiB
Python
76 lines
2.9 KiB
Python
import torch
|
|
from collections import defaultdict
|
|
from peft import PeftModel
|
|
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union
|
|
from transformers import BatchEncoding, Trainer
|
|
from trl import DPOTrainer
|
|
|
|
from llmtuner.extras.constants import IGNORE_INDEX
|
|
from llmtuner.tuner.core.trainer import PeftModelMixin
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import PreTrainedModel
|
|
from llmtuner.hparams import FinetuningArguments
|
|
|
|
|
|
class DPOPeftTrainer(PeftModelMixin, DPOTrainer):
|
|
|
|
def __init__(
|
|
self,
|
|
finetuning_args: "FinetuningArguments",
|
|
ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]] = None,
|
|
**kwargs
|
|
):
|
|
self.finetuning_args = finetuning_args
|
|
self.ref_model = ref_model
|
|
self.use_dpo_data_collator = True # hack to avoid warning
|
|
self.label_pad_token_id = IGNORE_INDEX
|
|
self.padding_value = 0
|
|
self.beta = finetuning_args.dpo_beta
|
|
self._stored_metrics = defaultdict(lambda: defaultdict(list))
|
|
|
|
Trainer.__init__(self, **kwargs)
|
|
if not hasattr(self, "accelerator"):
|
|
raise AttributeError("Please update `transformers`.")
|
|
|
|
if ref_model is not None:
|
|
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
|
|
|
|
def concatenated_forward(
|
|
self,
|
|
model: Optional[torch.nn.Module] = None,
|
|
batch: Optional[Dict[str, torch.Tensor]] = None
|
|
) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
|
|
batch_copied = BatchEncoding({k: v.detach().clone() for k, v in batch.items()}) # avoid error
|
|
unwrapped_model: "PreTrainedModel" = self.accelerator.unwrap_model(self.model)
|
|
|
|
if not torch.is_grad_enabled():
|
|
unwrapped_model.gradient_checkpointing_disable()
|
|
|
|
if model is None and isinstance(unwrapped_model, PeftModel): # peft model has no ref_model
|
|
with unwrapped_model.disable_adapter():
|
|
all_logits = self.model(
|
|
input_ids=batch_copied["input_ids"],
|
|
attention_mask=batch_copied["attention_mask"],
|
|
return_dict=True
|
|
).logits.to(torch.float32)
|
|
else:
|
|
all_logits = model(
|
|
input_ids=batch_copied["input_ids"],
|
|
attention_mask=batch_copied["attention_mask"],
|
|
return_dict=True
|
|
).logits.to(torch.float32)
|
|
|
|
if not torch.is_grad_enabled():
|
|
unwrapped_model.gradient_checkpointing_enable()
|
|
|
|
all_logps = self._get_batch_logps(
|
|
all_logits,
|
|
batch["labels"],
|
|
average_log_prob=False
|
|
)
|
|
batch_size = batch["input_ids"].size(0) // 2
|
|
chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0)
|
|
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
|
|
return chosen_logps, rejected_logps, chosen_logits, rejected_logits
|