mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-04 20:52:59 +08:00
Deprecate reserved_label_len arg Former-commit-id: 1771251ce3f6887b301dac10f3de7a253c5e5884
89 lines
3.3 KiB
Python
89 lines
3.3 KiB
Python
# Copyright 2024 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from enum import Enum, unique
|
|
from typing import TYPE_CHECKING, Dict, List, Sequence, Set, Union
|
|
|
|
from datasets import concatenate_datasets, interleave_datasets
|
|
|
|
from ..extras.logging import get_logger
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from datasets import Dataset, IterableDataset
|
|
from transformers import Seq2SeqTrainingArguments
|
|
|
|
from ..hparams import DataArguments
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
SLOTS = Sequence[Union[str, Set[str], Dict[str, str]]]
|
|
|
|
|
|
@unique
|
|
class Role(str, Enum):
|
|
USER = "user"
|
|
ASSISTANT = "assistant"
|
|
SYSTEM = "system"
|
|
FUNCTION = "function"
|
|
OBSERVATION = "observation"
|
|
|
|
|
|
def merge_dataset(
|
|
all_datasets: List[Union["Dataset", "IterableDataset"]],
|
|
data_args: "DataArguments",
|
|
training_args: "Seq2SeqTrainingArguments",
|
|
) -> Union["Dataset", "IterableDataset"]:
|
|
if len(all_datasets) == 1:
|
|
return all_datasets[0]
|
|
elif data_args.mix_strategy == "concat":
|
|
if data_args.streaming:
|
|
logger.warning("The samples between different datasets will not be mixed in streaming mode.")
|
|
return concatenate_datasets(all_datasets)
|
|
elif data_args.mix_strategy.startswith("interleave"):
|
|
if not data_args.streaming:
|
|
logger.warning("We recommend using `mix_strategy=concat` in non-streaming mode.")
|
|
return interleave_datasets(
|
|
datasets=all_datasets,
|
|
probabilities=data_args.interleave_probs,
|
|
seed=training_args.seed,
|
|
stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted",
|
|
)
|
|
else:
|
|
raise ValueError("Unknown mixing strategy.")
|
|
|
|
|
|
def split_dataset(
|
|
dataset: Union["Dataset", "IterableDataset"], data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments"
|
|
) -> Dict[str, "Dataset"]:
|
|
if training_args.do_train:
|
|
if data_args.val_size > 1e-6: # Split the dataset
|
|
if data_args.streaming:
|
|
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
|
|
val_set = dataset.take(int(data_args.val_size))
|
|
train_set = dataset.skip(int(data_args.val_size))
|
|
return {"train_dataset": train_set, "eval_dataset": val_set}
|
|
else:
|
|
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
|
|
dataset = dataset.train_test_split(test_size=val_size, seed=training_args.seed)
|
|
return {"train_dataset": dataset["train"], "eval_dataset": dataset["test"]}
|
|
else:
|
|
if data_args.streaming:
|
|
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
|
|
return {"train_dataset": dataset}
|
|
else: # do_eval or do_predict
|
|
return {"eval_dataset": dataset}
|