LLaMA-Factory/src/export_model.py
hiyouga c7d71dd8af use low_cpu_mem_usage to speed up loading
Former-commit-id: 771f454ff1deee4929927c58feab7dcd3b854f9c
2023-06-03 18:19:01 +08:00

24 lines
790 B
Python

# coding=utf-8
# Exports the fine-tuned model.
# Usage: python export_model.py --checkpoint_dir path_to_checkpoint --output_dir path_to_save_model
from transformers import HfArgumentParser, TrainingArguments
from utils import ModelArguments, FinetuningArguments, load_pretrained
def main():
parser = HfArgumentParser((ModelArguments, TrainingArguments, FinetuningArguments))
model_args, training_args, finetuning_args = parser.parse_args_into_dataclasses()
model, tokenizer = load_pretrained(model_args, finetuning_args)
model.save_pretrained(training_args.output_dir, max_shard_size="10GB")
tokenizer.save_pretrained(training_args.output_dir)
print("model and tokenizer have been saved at:", training_args.output_dir)
if __name__ == "__main__":
main()