hiyouga b015ac35d8 support export size setting
Former-commit-id: 859a6ea9425a09d7263f6436d05102df8129c248
2023-11-26 18:34:09 +08:00

129 lines
4.5 KiB
Python

import gradio as gr
from gradio.components import Component # cannot use TYPE_CHECKING here
from typing import TYPE_CHECKING, Any, Dict, Generator, List, Optional, Tuple
from llmtuner.chat import ChatModel
from llmtuner.extras.misc import torch_gc
from llmtuner.hparams import GeneratingArguments
from llmtuner.webui.common import get_save_dir
from llmtuner.webui.locales import ALERTS
if TYPE_CHECKING:
from llmtuner.webui.manager import Manager
class WebChatModel(ChatModel):
def __init__(
self,
manager: "Manager",
demo_mode: Optional[bool] = False,
lazy_init: Optional[bool] = True
) -> None:
self.manager = manager
self.demo_mode = demo_mode
self.model = None
self.tokenizer = None
self.generating_args = GeneratingArguments()
if not lazy_init: # read arguments from command line
super().__init__()
if demo_mode: # load demo_config.json if exists
import json
try:
with open("demo_config.json", "r", encoding="utf-8") as f:
args = json.load(f)
assert args.get("model_name_or_path", None) and args.get("template", None)
super().__init__(args)
except AssertionError:
print("Please provided model name and template in `demo_config.json`.")
except:
print("Cannot find `demo_config.json` at current directory.")
@property
def loaded(self) -> bool:
return self.model is not None
def load_model(self, data: Dict[Component, Any]) -> Generator[str, None, None]:
get = lambda name: data[self.manager.get_elem_by_name(name)]
lang = get("top.lang")
error = ""
if self.loaded:
error = ALERTS["err_exists"][lang]
elif not get("top.model_name"):
error = ALERTS["err_no_model"][lang]
elif not get("top.model_path"):
error = ALERTS["err_no_path"][lang]
elif self.demo_mode:
error = ALERTS["err_demo"][lang]
if error:
gr.Warning(error)
yield error
return
if get("top.checkpoints"):
checkpoint_dir = ",".join([
get_save_dir(get("top.model_name"), get("top.finetuning_type"), ckpt) for ckpt in get("top.checkpoints")
])
else:
checkpoint_dir = None
yield ALERTS["info_loading"][lang]
args = dict(
model_name_or_path=get("top.model_path"),
checkpoint_dir=checkpoint_dir,
finetuning_type=get("top.finetuning_type"),
quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None,
template=get("top.template"),
system_prompt=get("top.system_prompt"),
flash_attn=get("top.flash_attn"),
shift_attn=get("top.shift_attn"),
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None
)
super().__init__(args)
yield ALERTS["info_loaded"][lang]
def unload_model(self, data: Dict[Component, Any]) -> Generator[str, None, None]:
lang = data[self.manager.get_elem_by_name("top.lang")]
if self.demo_mode:
gr.Warning(ALERTS["err_demo"][lang])
yield ALERTS["err_demo"][lang]
return
yield ALERTS["info_unloading"][lang]
self.model = None
self.tokenizer = None
torch_gc()
yield ALERTS["info_unloaded"][lang]
def predict(
self,
chatbot: List[Tuple[str, str]],
query: str,
history: List[Tuple[str, str]],
system: str,
max_new_tokens: int,
top_p: float,
temperature: float
) -> Generator[Tuple[List[Tuple[str, str]], List[Tuple[str, str]]], None, None]:
chatbot.append([query, ""])
response = ""
for new_text in self.stream_chat(
query, history, system, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature
):
response += new_text
new_history = history + [(query, response)]
chatbot[-1] = [query, self.postprocess(response)]
yield chatbot, new_history
def postprocess(self, response: str) -> str:
blocks = response.split("```")
for i, block in enumerate(blocks):
if i % 2 == 0:
blocks[i] = block.replace("<", "&lt;").replace(">", "&gt;")
return "```".join(blocks)