mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-03 04:02:49 +08:00
155 lines
6.3 KiB
Python
155 lines
6.3 KiB
Python
import gradio as gr
|
|
from typing import TYPE_CHECKING, Dict
|
|
from transformers.trainer_utils import SchedulerType
|
|
|
|
from llmtuner.extras.constants import TRAINING_STAGES
|
|
from llmtuner.webui.common import list_adapters, list_dataset, DEFAULT_DATA_DIR
|
|
from llmtuner.webui.components.data import create_preview_box
|
|
from llmtuner.webui.utils import gen_plot
|
|
|
|
if TYPE_CHECKING:
|
|
from gradio.components import Component
|
|
from llmtuner.webui.engine import Engine
|
|
|
|
|
|
def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
|
|
input_elems = engine.manager.get_base_elems()
|
|
elem_dict = dict()
|
|
|
|
with gr.Row():
|
|
training_stage = gr.Dropdown(
|
|
choices=list(TRAINING_STAGES.keys()), value=list(TRAINING_STAGES.keys())[0], scale=2
|
|
)
|
|
dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=2)
|
|
dataset = gr.Dropdown(multiselect=True, scale=4)
|
|
preview_elems = create_preview_box(dataset_dir, dataset)
|
|
|
|
training_stage.change(list_dataset, [dataset_dir, training_stage], [dataset], queue=False)
|
|
dataset_dir.change(list_dataset, [dataset_dir, training_stage], [dataset], queue=False)
|
|
|
|
input_elems.update({training_stage, dataset_dir, dataset})
|
|
elem_dict.update(dict(
|
|
training_stage=training_stage, dataset_dir=dataset_dir, dataset=dataset, **preview_elems
|
|
))
|
|
|
|
with gr.Row():
|
|
cutoff_len = gr.Slider(value=1024, minimum=4, maximum=8192, step=1)
|
|
learning_rate = gr.Textbox(value="5e-5")
|
|
num_train_epochs = gr.Textbox(value="3.0")
|
|
max_samples = gr.Textbox(value="100000")
|
|
compute_type = gr.Radio(choices=["fp16", "bf16"], value="fp16")
|
|
|
|
input_elems.update({cutoff_len, learning_rate, num_train_epochs, max_samples, compute_type})
|
|
elem_dict.update(dict(
|
|
cutoff_len=cutoff_len, learning_rate=learning_rate, num_train_epochs=num_train_epochs,
|
|
max_samples=max_samples, compute_type=compute_type
|
|
))
|
|
|
|
with gr.Row():
|
|
batch_size = gr.Slider(value=4, minimum=1, maximum=512, step=1)
|
|
gradient_accumulation_steps = gr.Slider(value=4, minimum=1, maximum=512, step=1)
|
|
lr_scheduler_type = gr.Dropdown(
|
|
choices=[scheduler.value for scheduler in SchedulerType], value="cosine"
|
|
)
|
|
max_grad_norm = gr.Textbox(value="1.0")
|
|
val_size = gr.Slider(value=0, minimum=0, maximum=1, step=0.001)
|
|
|
|
input_elems.update({batch_size, gradient_accumulation_steps, lr_scheduler_type, max_grad_norm, val_size})
|
|
elem_dict.update(dict(
|
|
batch_size=batch_size, gradient_accumulation_steps=gradient_accumulation_steps,
|
|
lr_scheduler_type=lr_scheduler_type, max_grad_norm=max_grad_norm, val_size=val_size
|
|
))
|
|
|
|
with gr.Accordion(label="Extra config", open=False) as extra_tab:
|
|
with gr.Row():
|
|
logging_steps = gr.Slider(value=5, minimum=5, maximum=1000, step=5)
|
|
save_steps = gr.Slider(value=100, minimum=10, maximum=5000, step=10)
|
|
warmup_steps = gr.Slider(value=0, minimum=0, maximum=5000, step=1)
|
|
neftune_alpha = gr.Slider(value=0, minimum=0, maximum=10, step=0.1)
|
|
|
|
with gr.Column():
|
|
train_on_prompt = gr.Checkbox(value=False)
|
|
upcast_layernorm = gr.Checkbox(value=False)
|
|
|
|
input_elems.update({logging_steps, save_steps, warmup_steps, neftune_alpha, train_on_prompt, upcast_layernorm})
|
|
elem_dict.update(dict(
|
|
extra_tab=extra_tab, logging_steps=logging_steps, save_steps=save_steps, warmup_steps=warmup_steps,
|
|
neftune_alpha=neftune_alpha, train_on_prompt=train_on_prompt, upcast_layernorm=upcast_layernorm
|
|
))
|
|
|
|
with gr.Accordion(label="LoRA config", open=False) as lora_tab:
|
|
with gr.Row():
|
|
lora_rank = gr.Slider(value=8, minimum=1, maximum=1024, step=1, scale=1)
|
|
lora_dropout = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1)
|
|
lora_target = gr.Textbox(scale=1)
|
|
additional_target = gr.Textbox(scale=1)
|
|
create_new_adapter = gr.Checkbox(scale=1)
|
|
|
|
input_elems.update({lora_rank, lora_dropout, lora_target, additional_target, create_new_adapter})
|
|
elem_dict.update(dict(
|
|
lora_tab=lora_tab, lora_rank=lora_rank, lora_dropout=lora_dropout, lora_target=lora_target,
|
|
additional_target=additional_target, create_new_adapter=create_new_adapter
|
|
))
|
|
|
|
with gr.Accordion(label="RLHF config", open=False) as rlhf_tab:
|
|
with gr.Row():
|
|
dpo_beta = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1)
|
|
reward_model = gr.Dropdown(scale=3)
|
|
refresh_btn = gr.Button(scale=1)
|
|
|
|
refresh_btn.click(
|
|
list_adapters,
|
|
[engine.manager.get_elem_by_name("top.model_name"), engine.manager.get_elem_by_name("top.finetuning_type")],
|
|
[reward_model],
|
|
queue=False
|
|
)
|
|
|
|
input_elems.update({dpo_beta, reward_model})
|
|
elem_dict.update(dict(rlhf_tab=rlhf_tab, dpo_beta=dpo_beta, reward_model=reward_model, refresh_btn=refresh_btn))
|
|
|
|
with gr.Row():
|
|
cmd_preview_btn = gr.Button()
|
|
start_btn = gr.Button()
|
|
stop_btn = gr.Button()
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=3):
|
|
with gr.Row():
|
|
output_dir = gr.Textbox()
|
|
|
|
with gr.Row():
|
|
resume_btn = gr.Checkbox(visible=False, interactive=False, value=False)
|
|
process_bar = gr.Slider(visible=False, interactive=False)
|
|
|
|
with gr.Box():
|
|
output_box = gr.Markdown()
|
|
|
|
with gr.Column(scale=1):
|
|
loss_viewer = gr.Plot()
|
|
|
|
input_elems.add(output_dir)
|
|
output_elems = [output_box, process_bar]
|
|
|
|
cmd_preview_btn.click(engine.runner.preview_train, input_elems, output_elems)
|
|
start_btn.click(engine.runner.run_train, input_elems, output_elems)
|
|
stop_btn.click(engine.runner.set_abort, queue=False)
|
|
resume_btn.change(engine.runner.monitor, outputs=output_elems)
|
|
|
|
elem_dict.update(dict(
|
|
cmd_preview_btn=cmd_preview_btn, start_btn=start_btn, stop_btn=stop_btn, output_dir=output_dir,
|
|
resume_btn=resume_btn, process_bar=process_bar, output_box=output_box, loss_viewer=loss_viewer
|
|
))
|
|
|
|
output_box.change(
|
|
gen_plot,
|
|
[
|
|
engine.manager.get_elem_by_name("top.model_name"),
|
|
engine.manager.get_elem_by_name("top.finetuning_type"),
|
|
output_dir
|
|
],
|
|
loss_viewer,
|
|
queue=False
|
|
)
|
|
|
|
return elem_dict
|