LLaMA-Factory/examples/extras/fp8/llama3_fp8_deepspeed_sft.yaml
2025-10-02 02:06:09 +08:00

49 lines
1.1 KiB
YAML

# FP8 training example with DeepSpeed ZeRO-3
# This config demonstrates FP8 mixed precision training using HuggingFace Accelerate
# with DeepSpeed providing memory optimization (not FP8 handling)
### Model configuration
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### Method configuration
stage: sft
do_train: true
finetuning_type: full
### Dataset configuration
dataset: identity
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### Output configuration
output_dir: saves/llama3-8b/fp8-deepspeed/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### Training configuration
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 5.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
### FP8 configuration
fp8: true
fp8_backend: torchao # Use TorchAO backend for FP8
fp8_enable_fsdp_float8_all_gather: false # Not used with DeepSpeed
### DeepSpeed configuration
deepspeed: examples/deepspeed/ds_z3_fp8_config.json
### Logging configuration
report_to: wandb
run_name: llama3_fp8_deepspeed_sft