mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-04 20:52:59 +08:00
148 lines
5.3 KiB
Python
148 lines
5.3 KiB
Python
import json
|
|
from typing import TYPE_CHECKING, Any, Dict, Generator, List, Optional, Sequence, Tuple
|
|
|
|
import gradio as gr
|
|
from gradio.components import Component # cannot use TYPE_CHECKING here
|
|
|
|
from ..chat import ChatModel
|
|
from ..data import Role
|
|
from ..extras.misc import torch_gc
|
|
from ..hparams import GeneratingArguments
|
|
from .common import get_save_dir
|
|
from .locales import ALERTS
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from .manager import Manager
|
|
|
|
|
|
class WebChatModel(ChatModel):
|
|
def __init__(
|
|
self, manager: "Manager", demo_mode: Optional[bool] = False, lazy_init: Optional[bool] = True
|
|
) -> None:
|
|
self.manager = manager
|
|
self.demo_mode = demo_mode
|
|
self.model = None
|
|
self.tokenizer = None
|
|
self.generating_args = GeneratingArguments()
|
|
|
|
if not lazy_init: # read arguments from command line
|
|
super().__init__()
|
|
|
|
if demo_mode: # load demo_config.json if exists
|
|
import json
|
|
|
|
try:
|
|
with open("demo_config.json", "r", encoding="utf-8") as f:
|
|
args = json.load(f)
|
|
assert args.get("model_name_or_path", None) and args.get("template", None)
|
|
super().__init__(args)
|
|
except AssertionError:
|
|
print("Please provided model name and template in `demo_config.json`.")
|
|
except Exception:
|
|
print("Cannot find `demo_config.json` at current directory.")
|
|
|
|
@property
|
|
def loaded(self) -> bool:
|
|
return self.model is not None
|
|
|
|
def load_model(self, data: Dict[Component, Any]) -> Generator[str, None, None]:
|
|
get = lambda name: data[self.manager.get_elem_by_name(name)]
|
|
lang = get("top.lang")
|
|
error = ""
|
|
if self.loaded:
|
|
error = ALERTS["err_exists"][lang]
|
|
elif not get("top.model_name"):
|
|
error = ALERTS["err_no_model"][lang]
|
|
elif not get("top.model_path"):
|
|
error = ALERTS["err_no_path"][lang]
|
|
elif self.demo_mode:
|
|
error = ALERTS["err_demo"][lang]
|
|
|
|
if error:
|
|
gr.Warning(error)
|
|
yield error
|
|
return
|
|
|
|
if get("top.adapter_path"):
|
|
adapter_name_or_path = ",".join(
|
|
[
|
|
get_save_dir(get("top.model_name"), get("top.finetuning_type"), adapter)
|
|
for adapter in get("top.adapter_path")
|
|
]
|
|
)
|
|
else:
|
|
adapter_name_or_path = None
|
|
|
|
yield ALERTS["info_loading"][lang]
|
|
args = dict(
|
|
model_name_or_path=get("top.model_path"),
|
|
adapter_name_or_path=adapter_name_or_path,
|
|
finetuning_type=get("top.finetuning_type"),
|
|
quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None,
|
|
template=get("top.template"),
|
|
flash_attn=(get("top.booster") == "flash_attn"),
|
|
use_unsloth=(get("top.booster") == "unsloth"),
|
|
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None,
|
|
)
|
|
super().__init__(args)
|
|
|
|
yield ALERTS["info_loaded"][lang]
|
|
|
|
def unload_model(self, data: Dict[Component, Any]) -> Generator[str, None, None]:
|
|
lang = data[self.manager.get_elem_by_name("top.lang")]
|
|
|
|
if self.demo_mode:
|
|
gr.Warning(ALERTS["err_demo"][lang])
|
|
yield ALERTS["err_demo"][lang]
|
|
return
|
|
|
|
yield ALERTS["info_unloading"][lang]
|
|
self.model = None
|
|
self.tokenizer = None
|
|
torch_gc()
|
|
yield ALERTS["info_unloaded"][lang]
|
|
|
|
def predict(
|
|
self,
|
|
chatbot: List[Tuple[str, str]],
|
|
query: str,
|
|
messages: Sequence[Tuple[str, str]],
|
|
system: str,
|
|
tools: str,
|
|
max_new_tokens: int,
|
|
top_p: float,
|
|
temperature: float,
|
|
) -> Generator[Tuple[Sequence[Tuple[str, str]], Sequence[Tuple[str, str]]], None, None]:
|
|
chatbot.append([query, ""])
|
|
query_messages = messages + [{"role": Role.USER, "content": query}]
|
|
response = ""
|
|
for new_text in self.stream_chat(
|
|
query_messages, system, tools, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature
|
|
):
|
|
response += new_text
|
|
if tools:
|
|
result = self.template.format_tools.extract(response)
|
|
else:
|
|
result = response
|
|
|
|
if isinstance(result, tuple):
|
|
name, arguments = result
|
|
arguments = json.loads(arguments)
|
|
tool_call = json.dumps({"name": name, "arguments": arguments}, ensure_ascii=False)
|
|
output_messages = query_messages + [{"role": Role.FUNCTION, "content": tool_call}]
|
|
bot_text = "```json\n" + tool_call + "\n```"
|
|
else:
|
|
output_messages = query_messages + [{"role": Role.ASSISTANT, "content": result}]
|
|
bot_text = result
|
|
|
|
chatbot[-1] = [query, self.postprocess(bot_text)]
|
|
yield chatbot, output_messages
|
|
|
|
def postprocess(self, response: str) -> str:
|
|
blocks = response.split("```")
|
|
for i, block in enumerate(blocks):
|
|
if i % 2 == 0:
|
|
blocks[i] = block.replace("<", "<").replace(">", ">")
|
|
return "```".join(blocks)
|