LLaMA-Factory/tests/model/test_full.py
hiyouga a3f4925c2c add test cases
Former-commit-id: b27269bd2b52fb9d43cde8a8b7f293099b0127a2
2024-06-15 04:05:54 +08:00

50 lines
1.5 KiB
Python

import os
import torch
from llamafactory.hparams import get_infer_args, get_train_args
from llamafactory.model import load_model, load_tokenizer
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
TRAIN_ARGS = {
"model_name_or_path": TINY_LLAMA,
"stage": "sft",
"do_train": True,
"finetuning_type": "full",
"dataset": "llamafactory/tiny-supervised-dataset",
"dataset_dir": "ONLINE",
"template": "llama3",
"cutoff_len": 1024,
"overwrite_cache": True,
"output_dir": "dummy_dir",
"overwrite_output_dir": True,
"fp16": True,
}
INFER_ARGS = {
"model_name_or_path": TINY_LLAMA,
"finetuning_type": "full",
"template": "llama3",
"infer_dtype": "float16",
}
def test_full_train():
model_args, _, _, finetuning_args, _ = get_train_args(TRAIN_ARGS)
tokenizer_module = load_tokenizer(model_args)
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
for param in model.parameters():
assert param.requires_grad is True
assert param.dtype == torch.float32
def test_full_inference():
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS)
tokenizer_module = load_tokenizer(model_args)
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False)
for param in model.parameters():
assert param.requires_grad is False
assert param.dtype == torch.float16