Files
LLaMA-Factory/tests_v1/accelerator/test_allreduce.py
浮梦 18c21bce5a [test] add allreduce test on npu (#9619)
Co-authored-by: frozenleaves <frozen@Mac.local>
2025-12-16 21:33:30 +08:00

94 lines
2.7 KiB
Python

# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from llamafactory.v1.accelerator.helper import ReduceOp, all_reduce, is_torch_cuda_available, is_torch_npu_available
from llamafactory.v1.utils.utils import find_available_port
def _dist_worker(rank, world_size):
if is_torch_cuda_available():
backend = "nccl"
device = torch.device(f"cuda:{rank}")
torch.cuda.set_device(rank)
elif is_torch_npu_available():
backend = "hccl"
device = torch.device(f"npu:{rank}")
torch.npu.set_device(rank)
else:
backend = "gloo"
device = torch.device("cpu")
dist.init_process_group(
backend=backend,
rank=rank,
world_size=world_size,
)
# --------------------
# Test all_reduce SUM
# --------------------
y = torch.tensor(rank + 1.0, device=device)
y_sum = all_reduce(y.clone(), op=ReduceOp.SUM)
assert y_sum.item() == 3.0
# --------------------
# Test all_reduce MEAN
# --------------------
y_mean = all_reduce(y.clone(), op=ReduceOp.MEAN)
assert y_mean.item() == pytest.approx(1.5)
# --------------------
# Test all_reduce MAX
# --------------------
y_max = all_reduce(y.clone(), op=ReduceOp.MAX)
assert y_max.item() == 2.0
dist.destroy_process_group()
@pytest.mark.runs_on(["npu", "cuda"])
@pytest.mark.require_distributed(2)
def test_distributed_ops(monkeypatch):
monkeypatch.setenv("MASTER_ADDR", "127.0.0.1")
monkeypatch.setenv("MASTER_PORT", str(find_available_port()))
WORLD_SIZE = 2
mp.spawn(
_dist_worker,
args=(WORLD_SIZE,),
nprocs=WORLD_SIZE,
join=True,
)
@pytest.mark.runs_on(["npu", "cuda"])
@pytest.mark.require_distributed(4)
def test_required_multi():
# test require_distributed mark ok
pass
@pytest.mark.runs_on(["npu", "cuda"])
@pytest.mark.require_distributed(999)
def test_required_invalid():
# test require_distributed mark not ok,
raise RuntimeError(
"this case should not be run, please check whether the require_distributed mark implementation is correct"
)