mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-10-14 23:58:11 +08:00
53 lines
1.9 KiB
Python
53 lines
1.9 KiB
Python
# Copyright 2025 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import random
|
|
|
|
import pytest
|
|
from datasets import load_dataset
|
|
|
|
from llamafactory.v1.config.data_args import DataArguments
|
|
from llamafactory.v1.core.data_engine import DataEngine
|
|
|
|
|
|
@pytest.mark.parametrize("num_samples", [16])
|
|
def test_alpaca_converter(num_samples: int):
|
|
data_args = DataArguments(dataset="llamafactory/v1-sft-demo/dataset_info.yaml")
|
|
data_engine = DataEngine(data_args)
|
|
original_data = load_dataset("llamafactory/tiny-supervised-dataset", split="train")
|
|
indexes = random.choices(range(len(data_engine)), k=num_samples)
|
|
for index in indexes:
|
|
print(data_engine[index])
|
|
expected_data = {
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "value": original_data[index]["instruction"] + original_data[index]["input"]}
|
|
],
|
|
"loss_weight": 0.0,
|
|
},
|
|
{
|
|
"role": "assistant",
|
|
"content": [{"type": "text", "value": original_data[index]["output"]}],
|
|
"loss_weight": 1.0,
|
|
},
|
|
]
|
|
}
|
|
assert data_engine[index] == {"_dataset_name": "tiny_dataset", **expected_data}
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_alpaca_converter(1)
|