mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-07-31 10:42:50 +08:00
235 lines
10 KiB
Python
235 lines
10 KiB
Python
# Copyright 2025 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
from typing import TYPE_CHECKING
|
|
|
|
import pytest
|
|
from transformers import AutoTokenizer
|
|
|
|
from llamafactory.data import get_template_and_fix_tokenizer
|
|
from llamafactory.data.template import parse_template
|
|
from llamafactory.hparams import DataArguments
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import PreTrainedTokenizer
|
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
|
|
|
|
MESSAGES = [
|
|
{"role": "user", "content": "How are you"},
|
|
{"role": "assistant", "content": "I am fine!"},
|
|
{"role": "user", "content": "你好"},
|
|
{"role": "assistant", "content": "很高兴认识你!"},
|
|
]
|
|
|
|
|
|
def _check_tokenization(
|
|
tokenizer: "PreTrainedTokenizer", batch_input_ids: list[list[int]], batch_text: list[str]
|
|
) -> None:
|
|
r"""Check token ids and texts.
|
|
|
|
encode(text) == token_ids
|
|
decode(token_ids) == text
|
|
"""
|
|
for input_ids, text in zip(batch_input_ids, batch_text):
|
|
assert tokenizer.encode(text, add_special_tokens=False) == input_ids
|
|
assert tokenizer.decode(input_ids) == text
|
|
|
|
|
|
def _check_template(model_id: str, template_name: str, prompt_str: str, answer_str: str, use_fast: bool) -> None:
|
|
r"""Check template.
|
|
|
|
Args:
|
|
model_id: the model id on hugging face hub.
|
|
template_name: the template name.
|
|
prompt_str: the string corresponding to the prompt part.
|
|
answer_str: the string corresponding to the answer part.
|
|
use_fast: whether to use fast tokenizer.
|
|
|
|
"""
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=use_fast, token=HF_TOKEN)
|
|
content_str = tokenizer.apply_chat_template(MESSAGES, tokenize=False)
|
|
content_ids = tokenizer.apply_chat_template(MESSAGES, tokenize=True)
|
|
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template=template_name))
|
|
prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES)
|
|
assert content_str == prompt_str + answer_str
|
|
assert content_ids == prompt_ids + answer_ids
|
|
_check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str))
|
|
|
|
|
|
@pytest.mark.parametrize("use_fast", [True, False])
|
|
def test_encode_oneturn(use_fast: bool):
|
|
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
|
|
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
|
|
prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES)
|
|
prompt_str = (
|
|
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>"
|
|
"<|start_header_id|>assistant<|end_header_id|>\n\nI am fine!<|eot_id|>"
|
|
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>"
|
|
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
|
)
|
|
answer_str = "很高兴认识你!<|eot_id|>"
|
|
_check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str))
|
|
|
|
|
|
@pytest.mark.parametrize("use_fast", [True, False])
|
|
def test_encode_multiturn(use_fast: bool):
|
|
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
|
|
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
|
|
encoded_pairs = template.encode_multiturn(tokenizer, MESSAGES)
|
|
prompt_str_1 = (
|
|
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>"
|
|
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
|
)
|
|
answer_str_1 = "I am fine!<|eot_id|>"
|
|
prompt_str_2 = (
|
|
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
|
)
|
|
answer_str_2 = "很高兴认识你!<|eot_id|>"
|
|
_check_tokenization(
|
|
tokenizer,
|
|
(encoded_pairs[0][0], encoded_pairs[0][1], encoded_pairs[1][0], encoded_pairs[1][1]),
|
|
(prompt_str_1, answer_str_1, prompt_str_2, answer_str_2),
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("use_fast", [True, False])
|
|
def test_jinja_template(use_fast: bool):
|
|
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
|
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
|
|
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
|
|
tokenizer.chat_template = template._get_jinja_template(tokenizer) # llama3 template no replace
|
|
assert tokenizer.chat_template != ref_tokenizer.chat_template
|
|
assert tokenizer.apply_chat_template(MESSAGES) == ref_tokenizer.apply_chat_template(MESSAGES)
|
|
|
|
|
|
def test_ollama_modelfile():
|
|
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
|
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
|
|
assert template.get_ollama_modelfile(tokenizer) == (
|
|
"# ollama modelfile auto-generated by llamafactory\n\n"
|
|
"FROM .\n\n"
|
|
'TEMPLATE """<|begin_of_text|>'
|
|
"{{ if .System }}<|start_header_id|>system<|end_header_id|>\n\n{{ .System }}<|eot_id|>{{ end }}"
|
|
'{{ range .Messages }}{{ if eq .Role "user" }}<|start_header_id|>user<|end_header_id|>\n\n{{ .Content }}'
|
|
"<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
|
'{{ else if eq .Role "assistant" }}{{ .Content }}<|eot_id|>{{ end }}{{ end }}"""\n\n'
|
|
'PARAMETER stop "<|eom_id|>"\n'
|
|
'PARAMETER stop "<|eot_id|>"\n'
|
|
"PARAMETER num_ctx 4096\n"
|
|
)
|
|
|
|
|
|
def test_get_stop_token_ids():
|
|
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
|
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
|
|
assert set(template.get_stop_token_ids(tokenizer)) == {128008, 128009}
|
|
|
|
|
|
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
|
@pytest.mark.parametrize("use_fast", [True, False])
|
|
def test_gemma_template(use_fast: bool):
|
|
prompt_str = (
|
|
"<bos><start_of_turn>user\nHow are you<end_of_turn>\n"
|
|
"<start_of_turn>model\nI am fine!<end_of_turn>\n"
|
|
"<start_of_turn>user\n你好<end_of_turn>\n"
|
|
"<start_of_turn>model\n"
|
|
)
|
|
answer_str = "很高兴认识你!<end_of_turn>\n"
|
|
_check_template("google/gemma-2-9b-it", "gemma", prompt_str, answer_str, use_fast)
|
|
|
|
|
|
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
|
@pytest.mark.parametrize("use_fast", [True, False])
|
|
def test_llama3_template(use_fast: bool):
|
|
prompt_str = (
|
|
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>"
|
|
"<|start_header_id|>assistant<|end_header_id|>\n\nI am fine!<|eot_id|>"
|
|
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>"
|
|
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
|
)
|
|
answer_str = "很高兴认识你!<|eot_id|>"
|
|
_check_template("meta-llama/Meta-Llama-3-8B-Instruct", "llama3", prompt_str, answer_str, use_fast)
|
|
|
|
|
|
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
|
@pytest.mark.parametrize(
|
|
"use_fast", [True, pytest.param(False, marks=pytest.mark.xfail(reason="Phi-4 slow tokenizer is broken."))]
|
|
)
|
|
def test_phi4_template(use_fast: bool):
|
|
prompt_str = (
|
|
"<|im_start|>user<|im_sep|>How are you<|im_end|>"
|
|
"<|im_start|>assistant<|im_sep|>I am fine!<|im_end|>"
|
|
"<|im_start|>user<|im_sep|>你好<|im_end|>"
|
|
"<|im_start|>assistant<|im_sep|>"
|
|
)
|
|
answer_str = "很高兴认识你!<|im_end|>"
|
|
_check_template("microsoft/phi-4", "phi4", prompt_str, answer_str, use_fast)
|
|
|
|
|
|
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.") # TODO: why it is gated?
|
|
@pytest.mark.parametrize("use_fast", [True, False])
|
|
def test_qwen_template(use_fast: bool):
|
|
prompt_str = (
|
|
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
|
|
"<|im_start|>user\nHow are you<|im_end|>\n"
|
|
"<|im_start|>assistant\nI am fine!<|im_end|>\n"
|
|
"<|im_start|>user\n你好<|im_end|>\n"
|
|
"<|im_start|>assistant\n"
|
|
)
|
|
answer_str = "很高兴认识你!<|im_end|>\n"
|
|
_check_template("Qwen/Qwen2-7B-Instruct", "qwen", prompt_str, answer_str, use_fast)
|
|
|
|
|
|
@pytest.mark.parametrize("use_fast", [True, False])
|
|
@pytest.mark.xfail(reason="Yi tokenizer is broken.")
|
|
def test_yi_template(use_fast: bool):
|
|
prompt_str = (
|
|
"<|im_start|>user\nHow are you<|im_end|>\n"
|
|
"<|im_start|>assistant\nI am fine!<|im_end|>\n"
|
|
"<|im_start|>user\n你好<|im_end|>\n"
|
|
"<|im_start|>assistant\n"
|
|
)
|
|
answer_str = "很高兴认识你!<|im_end|>\n"
|
|
_check_template("01-ai/Yi-1.5-6B-Chat", "yi", prompt_str, answer_str, use_fast)
|
|
|
|
|
|
def test_parse_template():
|
|
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, token=HF_TOKEN)
|
|
template = parse_template(tokenizer)
|
|
assert template.format_user.slots == [
|
|
"<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>"
|
|
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
|
]
|
|
assert template.format_assistant.slots == ["{{content}}<|eot_id|>"]
|
|
assert template.format_system.slots == ["<|start_header_id|>system<|end_header_id|>\n\n{{content}}<|eot_id|>"]
|
|
assert template.format_prefix.slots == ["<|begin_of_text|>"]
|
|
assert template.default_system == ""
|
|
|
|
|
|
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
|
def test_parse_qwen_template():
|
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B-Instruct", token=HF_TOKEN)
|
|
template = parse_template(tokenizer)
|
|
assert template.format_user.slots == ["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]
|
|
assert template.format_assistant.slots == ["{{content}}<|im_end|>\n"]
|
|
assert template.format_system.slots == ["<|im_start|>system\n{{content}}<|im_end|>\n"]
|
|
assert template.format_prefix.slots == []
|
|
assert template.default_system == "You are a helpful assistant."
|