mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-07-31 10:42:50 +08:00
130 lines
5.5 KiB
Python
130 lines
5.5 KiB
Python
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
|
|
#
|
|
# This code is inspired by the HuggingFace's transformers library.
|
|
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/trainer.py
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import os
|
|
from types import MethodType
|
|
from typing import TYPE_CHECKING, Optional, Union
|
|
|
|
import torch
|
|
from transformers import Trainer
|
|
from typing_extensions import override
|
|
|
|
from ...extras import logging
|
|
from ...extras.packages import is_transformers_version_greater_than
|
|
from ..callbacks import FixValueHeadModelCallback, SaveProcessorCallback
|
|
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import PreTrainedModel, ProcessorMixin
|
|
from transformers.trainer import PredictionOutput
|
|
|
|
from ...hparams import FinetuningArguments
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class PairwiseTrainer(Trainer):
|
|
r"""Inherits Trainer to compute pairwise loss."""
|
|
|
|
def __init__(
|
|
self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs
|
|
) -> None:
|
|
if is_transformers_version_greater_than("4.46"):
|
|
kwargs["processing_class"] = kwargs.pop("tokenizer")
|
|
|
|
super().__init__(**kwargs)
|
|
self.model_accepts_loss_kwargs = False # overwrite trainer's default behavior
|
|
self.finetuning_args = finetuning_args
|
|
self.can_return_loss = True # override property to return eval_loss
|
|
self.add_callback(FixValueHeadModelCallback)
|
|
|
|
if processor is not None:
|
|
self.add_callback(SaveProcessorCallback(processor))
|
|
|
|
if finetuning_args.use_badam:
|
|
from badam import BAdamCallback, clip_grad_norm_old_version # type: ignore
|
|
|
|
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
|
|
self.add_callback(BAdamCallback)
|
|
|
|
@override
|
|
def create_optimizer(self) -> "torch.optim.Optimizer":
|
|
if self.optimizer is None:
|
|
self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args)
|
|
return super().create_optimizer()
|
|
|
|
@override
|
|
def create_scheduler(
|
|
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
|
) -> "torch.optim.lr_scheduler.LRScheduler":
|
|
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
|
return super().create_scheduler(num_training_steps, optimizer)
|
|
|
|
@override
|
|
def _get_train_sampler(self) -> Optional["torch.utils.data.Sampler"]:
|
|
if self.finetuning_args.disable_shuffling:
|
|
return torch.utils.data.SequentialSampler(self.train_dataset)
|
|
|
|
return super()._get_train_sampler()
|
|
|
|
@override
|
|
def compute_loss(
|
|
self, model: "PreTrainedModel", inputs: dict[str, "torch.Tensor"], return_outputs: bool = False, **kwargs
|
|
) -> Union["torch.Tensor", tuple["torch.Tensor", list["torch.Tensor"]]]:
|
|
r"""Compute pairwise loss. The first n examples are chosen and the last n examples are rejected.
|
|
|
|
Subclass and override to inject custom behavior.
|
|
|
|
Note that the first element will be removed from the output tuple.
|
|
See: https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/trainer.py#L3842
|
|
"""
|
|
_, _, values = model(**inputs, output_hidden_states=True, return_dict=True, use_cache=False)
|
|
batch_size = inputs["input_ids"].size(0) // 2
|
|
chosen_masks, rejected_masks = torch.split(inputs["attention_mask"], batch_size, dim=0)
|
|
chosen_rewards, rejected_rewards = torch.split(values, batch_size, dim=0)
|
|
chosen_scores = chosen_rewards.gather(dim=-1, index=(chosen_masks.sum(dim=-1, keepdim=True) - 1))
|
|
rejected_scores = rejected_rewards.gather(dim=-1, index=(rejected_masks.sum(dim=-1, keepdim=True) - 1))
|
|
chosen_scores, rejected_scores = chosen_scores.squeeze(), rejected_scores.squeeze()
|
|
|
|
loss = -torch.nn.functional.logsigmoid(chosen_scores.float() - rejected_scores.float()).mean()
|
|
if return_outputs:
|
|
return loss, (loss, chosen_scores, rejected_scores)
|
|
else:
|
|
return loss
|
|
|
|
def save_predictions(self, predict_results: "PredictionOutput") -> None:
|
|
r"""Save model predictions to `output_dir`.
|
|
|
|
A custom behavior that not contained in Seq2SeqTrainer.
|
|
"""
|
|
if not self.is_world_process_zero():
|
|
return
|
|
|
|
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
|
|
logger.info_rank0(f"Saving prediction results to {output_prediction_file}")
|
|
chosen_scores, rejected_scores = predict_results.predictions
|
|
|
|
with open(output_prediction_file, "w", encoding="utf-8") as writer:
|
|
res: list[str] = []
|
|
for c_score, r_score in zip(chosen_scores, rejected_scores):
|
|
res.append(json.dumps({"chosen": round(float(c_score), 2), "rejected": round(float(r_score), 2)}))
|
|
|
|
writer.write("\n".join(res))
|