mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-07-31 10:42:50 +08:00
368 lines
14 KiB
Python
368 lines
14 KiB
Python
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
|
|
#
|
|
# This code is inspired by the HuggingFace's transformers library.
|
|
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
from dataclasses import asdict, dataclass, field, fields
|
|
from typing import Any, Literal, Optional, Union
|
|
|
|
import torch
|
|
from transformers.training_args import _convert_str_dict
|
|
from typing_extensions import Self
|
|
|
|
from ..extras.constants import AttentionFunction, EngineName, RopeScaling
|
|
|
|
|
|
@dataclass
|
|
class BaseModelArguments:
|
|
r"""Arguments pertaining to the model."""
|
|
|
|
model_name_or_path: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models."
|
|
},
|
|
)
|
|
adapter_name_or_path: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"Path to the adapter weight or identifier from huggingface.co/models. "
|
|
"Use commas to separate multiple adapters."
|
|
)
|
|
},
|
|
)
|
|
adapter_folder: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "The folder containing the adapter weights to load."},
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."},
|
|
)
|
|
use_fast_tokenizer: bool = field(
|
|
default=True,
|
|
metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."},
|
|
)
|
|
resize_vocab: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."},
|
|
)
|
|
split_special_tokens: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not the special tokens should be split during the tokenization process."},
|
|
)
|
|
new_special_tokens: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Special tokens to be added into the tokenizer. Use commas to separate multiple tokens."},
|
|
)
|
|
model_revision: str = field(
|
|
default="main",
|
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
|
)
|
|
low_cpu_mem_usage: bool = field(
|
|
default=True,
|
|
metadata={"help": "Whether or not to use memory-efficient model loading."},
|
|
)
|
|
rope_scaling: Optional[RopeScaling] = field(
|
|
default=None,
|
|
metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."},
|
|
)
|
|
flash_attn: AttentionFunction = field(
|
|
default=AttentionFunction.AUTO,
|
|
metadata={"help": "Enable FlashAttention for faster training and inference."},
|
|
)
|
|
shift_attn: bool = field(
|
|
default=False,
|
|
metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."},
|
|
)
|
|
mixture_of_depths: Optional[Literal["convert", "load"]] = field(
|
|
default=None,
|
|
metadata={"help": "Convert the model to mixture-of-depths (MoD) or load the MoD model."},
|
|
)
|
|
use_unsloth: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."},
|
|
)
|
|
use_unsloth_gc: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to use unsloth's gradient checkpointing (no need to install unsloth)."},
|
|
)
|
|
enable_liger_kernel: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to enable liger kernel for faster training."},
|
|
)
|
|
moe_aux_loss_coef: Optional[float] = field(
|
|
default=None,
|
|
metadata={"help": "Coefficient of the auxiliary router loss in mixture-of-experts model."},
|
|
)
|
|
disable_gradient_checkpointing: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to disable gradient checkpointing."},
|
|
)
|
|
use_reentrant_gc: bool = field(
|
|
default=True,
|
|
metadata={"help": "Whether or not to use reentrant gradient checkpointing."},
|
|
)
|
|
upcast_layernorm: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to upcast the layernorm weights in fp32."},
|
|
)
|
|
upcast_lmhead_output: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to upcast the output of lm_head in fp32."},
|
|
)
|
|
train_from_scratch: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to randomly initialize the model weights."},
|
|
)
|
|
infer_backend: EngineName = field(
|
|
default=EngineName.HF,
|
|
metadata={"help": "Backend engine used at inference."},
|
|
)
|
|
offload_folder: str = field(
|
|
default="offload",
|
|
metadata={"help": "Path to offload model weights."},
|
|
)
|
|
use_cache: bool = field(
|
|
default=True,
|
|
metadata={"help": "Whether or not to use KV cache in generation."},
|
|
)
|
|
infer_dtype: Literal["auto", "float16", "bfloat16", "float32"] = field(
|
|
default="auto",
|
|
metadata={"help": "Data type for model weights and activations at inference."},
|
|
)
|
|
hf_hub_token: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Auth token to log in with Hugging Face Hub."},
|
|
)
|
|
ms_hub_token: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Auth token to log in with ModelScope Hub."},
|
|
)
|
|
om_hub_token: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Auth token to log in with Modelers Hub."},
|
|
)
|
|
print_param_status: bool = field(
|
|
default=False,
|
|
metadata={"help": "For debugging purposes, print the status of the parameters in the model."},
|
|
)
|
|
trust_remote_code: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether to trust the execution of code from datasets/models defined on the Hub or not."},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
if self.model_name_or_path is None:
|
|
raise ValueError("Please provide `model_name_or_path`.")
|
|
|
|
if self.split_special_tokens and self.use_fast_tokenizer:
|
|
raise ValueError("`split_special_tokens` is only supported for slow tokenizers.")
|
|
|
|
if self.adapter_name_or_path is not None: # support merging multiple lora weights
|
|
self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")]
|
|
|
|
if self.new_special_tokens is not None: # support multiple special tokens
|
|
self.new_special_tokens = [token.strip() for token in self.new_special_tokens.split(",")]
|
|
|
|
|
|
@dataclass
|
|
class QuantizationArguments:
|
|
r"""Arguments pertaining to the quantization method."""
|
|
|
|
quantization_method: Literal["bitsandbytes", "hqq", "eetq"] = field(
|
|
default="bitsandbytes",
|
|
metadata={"help": "Quantization method to use for on-the-fly quantization."},
|
|
)
|
|
quantization_bit: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of bits to quantize the model using on-the-fly quantization."},
|
|
)
|
|
quantization_type: Literal["fp4", "nf4"] = field(
|
|
default="nf4",
|
|
metadata={"help": "Quantization data type to use in bitsandbytes int4 training."},
|
|
)
|
|
double_quantization: bool = field(
|
|
default=True,
|
|
metadata={"help": "Whether or not to use double quantization in bitsandbytes int4 training."},
|
|
)
|
|
quantization_device_map: Optional[Literal["auto"]] = field(
|
|
default=None,
|
|
metadata={"help": "Device map used to infer the 4-bit quantized model, needs bitsandbytes>=0.43.0."},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class ProcessorArguments:
|
|
r"""Arguments pertaining to the image processor."""
|
|
|
|
image_max_pixels: int = field(
|
|
default=768 * 768,
|
|
metadata={"help": "The maximum number of pixels of image inputs."},
|
|
)
|
|
image_min_pixels: int = field(
|
|
default=32 * 32,
|
|
metadata={"help": "The minimum number of pixels of image inputs."},
|
|
)
|
|
video_max_pixels: int = field(
|
|
default=256 * 256,
|
|
metadata={"help": "The maximum number of pixels of video inputs."},
|
|
)
|
|
video_min_pixels: int = field(
|
|
default=16 * 16,
|
|
metadata={"help": "The minimum number of pixels of video inputs."},
|
|
)
|
|
video_fps: float = field(
|
|
default=2.0,
|
|
metadata={"help": "The frames to sample per second for video inputs."},
|
|
)
|
|
video_maxlen: int = field(
|
|
default=128,
|
|
metadata={"help": "The maximum number of sampled frames for video inputs."},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class ExportArguments:
|
|
r"""Arguments pertaining to the model export."""
|
|
|
|
export_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Path to the directory to save the exported model."},
|
|
)
|
|
export_size: int = field(
|
|
default=5,
|
|
metadata={"help": "The file shard size (in GB) of the exported model."},
|
|
)
|
|
export_device: Literal["cpu", "auto"] = field(
|
|
default="cpu",
|
|
metadata={"help": "The device used in model export, use `auto` to accelerate exporting."},
|
|
)
|
|
export_quantization_bit: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of bits to quantize the exported model."},
|
|
)
|
|
export_quantization_dataset: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."},
|
|
)
|
|
export_quantization_nsamples: int = field(
|
|
default=128,
|
|
metadata={"help": "The number of samples used for quantization."},
|
|
)
|
|
export_quantization_maxlen: int = field(
|
|
default=1024,
|
|
metadata={"help": "The maximum length of the model inputs used for quantization."},
|
|
)
|
|
export_legacy_format: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."},
|
|
)
|
|
export_hub_model_id: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "The name of the repository if push the model to the Hugging Face hub."},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
if self.export_quantization_bit is not None and self.export_quantization_dataset is None:
|
|
raise ValueError("Quantization dataset is necessary for exporting.")
|
|
|
|
|
|
@dataclass
|
|
class VllmArguments:
|
|
r"""Arguments pertaining to the vLLM worker."""
|
|
|
|
vllm_maxlen: int = field(
|
|
default=4096,
|
|
metadata={"help": "Maximum sequence (prompt + response) length of the vLLM engine."},
|
|
)
|
|
vllm_gpu_util: float = field(
|
|
default=0.9,
|
|
metadata={"help": "The fraction of GPU memory in (0,1) to be used for the vLLM engine."},
|
|
)
|
|
vllm_enforce_eager: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to disable CUDA graph in the vLLM engine."},
|
|
)
|
|
vllm_max_lora_rank: int = field(
|
|
default=32,
|
|
metadata={"help": "Maximum rank of all LoRAs in the vLLM engine."},
|
|
)
|
|
vllm_config: Optional[Union[dict, str]] = field(
|
|
default=None,
|
|
metadata={"help": "Config to initialize the vllm engine. Please use JSON strings."},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
if isinstance(self.vllm_config, str) and self.vllm_config.startswith("{"):
|
|
self.vllm_config = _convert_str_dict(json.loads(self.vllm_config))
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments(VllmArguments, ExportArguments, ProcessorArguments, QuantizationArguments, BaseModelArguments):
|
|
r"""Arguments pertaining to which model/config/tokenizer we are going to fine-tune or infer.
|
|
|
|
The class on the most right will be displayed first.
|
|
"""
|
|
|
|
compute_dtype: Optional[torch.dtype] = field(
|
|
default=None,
|
|
init=False,
|
|
metadata={"help": "Torch data type for computing model outputs, derived from `fp/bf16`. Do not specify it."},
|
|
)
|
|
device_map: Optional[Union[str, dict[str, Any]]] = field(
|
|
default=None,
|
|
init=False,
|
|
metadata={"help": "Device map for model placement, derived from training stage. Do not specify it."},
|
|
)
|
|
model_max_length: Optional[int] = field(
|
|
default=None,
|
|
init=False,
|
|
metadata={"help": "The maximum input length for model, derived from `cutoff_len`. Do not specify it."},
|
|
)
|
|
block_diag_attn: bool = field(
|
|
default=False,
|
|
init=False,
|
|
metadata={"help": "Whether use block diag attention or not, derived from `neat_packing`. Do not specify it."},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
BaseModelArguments.__post_init__(self)
|
|
ExportArguments.__post_init__(self)
|
|
VllmArguments.__post_init__(self)
|
|
|
|
@classmethod
|
|
def copyfrom(cls, source: "Self", **kwargs) -> "Self":
|
|
init_args, lazy_args = {}, {}
|
|
for attr in fields(source):
|
|
if attr.init:
|
|
init_args[attr.name] = getattr(source, attr.name)
|
|
else:
|
|
lazy_args[attr.name] = getattr(source, attr.name)
|
|
|
|
init_args.update(kwargs)
|
|
result = cls(**init_args)
|
|
for name, value in lazy_args.items():
|
|
setattr(result, name, value)
|
|
|
|
return result
|
|
|
|
def to_dict(self) -> dict[str, Any]:
|
|
args = asdict(self)
|
|
args = {k: f"<{k.upper()}>" if k.endswith("token") else v for k, v in args.items()}
|
|
return args
|