LLaMA-Factory/tests/data/test_converter.py
hoshi-hiyouga 1679930e00 [breaking change] refactor data pipeline (#6901)
* refactor data

* rename file

Former-commit-id: 617c8ab467d32be5f7d5c94fa89c0e3d7d1963bc
2025-02-13 00:39:20 +08:00

47 lines
1.7 KiB
Python

from llamafactory.data import Role
from llamafactory.data.converter import get_dataset_converter
from llamafactory.data.parser import DatasetAttr
from llamafactory.hparams import DataArguments
def test_alpaca_converter():
dataset_attr = DatasetAttr("hf_hub", "llamafactory/tiny-supervised-dataset")
data_args = DataArguments()
example = {
"instruction": "Solve the math problem.",
"input": "3 + 4",
"output": "The answer is 7.",
}
dataset_converter = get_dataset_converter("alpaca", dataset_attr, data_args)
assert dataset_converter(example) == {
"_prompt": [{"role": Role.USER.value, "content": "Solve the math problem.\n3 + 4"}],
"_response": [{"role": Role.ASSISTANT.value, "content": "The answer is 7."}],
"_system": "",
"_tools": "",
"_images": None,
"_videos": None,
"_audios": None,
}
def test_sharegpt_converter():
dataset_attr = DatasetAttr("hf_hub", "llamafactory/tiny-supervised-dataset")
data_args = DataArguments()
example = {
"conversations": [
{"from": "system", "value": "You are a helpful assistant."},
{"from": "human", "value": "Solve the math problem.\n3 + 4"},
{"from": "gpt", "value": "The answer is 7."},
]
}
dataset_converter = get_dataset_converter("sharegpt", dataset_attr, data_args)
assert dataset_converter(example) == {
"_prompt": [{"role": Role.USER.value, "content": "Solve the math problem.\n3 + 4"}],
"_response": [{"role": Role.ASSISTANT.value, "content": "The answer is 7."}],
"_system": "You are a helpful assistant.",
"_tools": "",
"_images": None,
"_videos": None,
"_audios": None,
}