mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-04 20:52:59 +08:00
62 lines
2.1 KiB
Python
62 lines
2.1 KiB
Python
import hashlib
|
|
from typing import TYPE_CHECKING, Dict, List, Optional, Union
|
|
|
|
from llmtuner.extras.logging import get_logger
|
|
|
|
if TYPE_CHECKING:
|
|
from datasets import Dataset, IterableDataset
|
|
from transformers import TrainingArguments
|
|
from llmtuner.hparams import DataArguments
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
EXT2TYPE = {
|
|
"arrow": "arrow",
|
|
"csv": "csv",
|
|
"json": "json",
|
|
"jsonl": "json",
|
|
"parquet": "parquet",
|
|
"txt": "text"
|
|
}
|
|
|
|
|
|
def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None:
|
|
if file_sha1 is None:
|
|
logger.warning("Checksum failed: missing SHA-1 hash value in dataset_info.json.")
|
|
return
|
|
|
|
if len(data_files) != 1:
|
|
logger.warning("Checksum failed: too many files.")
|
|
return
|
|
|
|
with open(data_files[0], "rb") as f:
|
|
sha1 = hashlib.sha1(f.read()).hexdigest()
|
|
if sha1 != file_sha1:
|
|
logger.warning("Checksum failed: mismatched SHA-1 hash value at {}.".format(data_files[0]))
|
|
|
|
|
|
def split_dataset(
|
|
dataset: Union["Dataset", "IterableDataset"],
|
|
data_args: "DataArguments",
|
|
training_args: "TrainingArguments"
|
|
) -> Dict[str, "Dataset"]:
|
|
if training_args.do_train:
|
|
if data_args.val_size > 1e-6: # Split the dataset
|
|
if data_args.streaming:
|
|
val_set = dataset.take(int(data_args.val_size))
|
|
train_set = dataset.skip(int(data_args.val_size))
|
|
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
|
|
return {"train_dataset": train_set, "eval_dataset": val_set}
|
|
else:
|
|
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
|
|
dataset = dataset.train_test_split(test_size=val_size, seed=training_args.seed)
|
|
return {"train_dataset": dataset["train"], "eval_dataset": dataset["test"]}
|
|
else:
|
|
if data_args.streaming:
|
|
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
|
|
return {"train_dataset": dataset}
|
|
else: # do_eval or do_predict
|
|
return {"eval_dataset": dataset}
|