mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-09-13 16:42:48 +08:00
275 lines
9.9 KiB
Python
275 lines
9.9 KiB
Python
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
|
|
#
|
|
# This code is inspired by the HuggingFace's Transformers library.
|
|
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llava/modeling_llava.py
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from dataclasses import dataclass
|
|
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Set, Tuple, Union
|
|
|
|
import torch
|
|
import transformers
|
|
import transformers.models
|
|
from transformers.activations import ACT2FN
|
|
|
|
from ...extras import logging
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import LlavaConfig, PretrainedConfig, PreTrainedModel, ProcessorMixin
|
|
|
|
from ...hparams import FinetuningArguments, ModelArguments
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
transformers_logger = transformers.utils.logging.get_logger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class CompositeModel:
|
|
model_type: str
|
|
projector_key: str
|
|
vision_model_keys: List[str]
|
|
language_model_keys: List[str]
|
|
|
|
def get_projector(self, module: "torch.nn.Module") -> "torch.nn.Module":
|
|
for key in self.projector_key.split("."):
|
|
module = getattr(module, key)
|
|
|
|
return module
|
|
|
|
|
|
COMPOSITE_MODELS: Dict[str, "CompositeModel"] = {}
|
|
|
|
|
|
def _register_composite_model(
|
|
model_type: str,
|
|
projector_key: Optional[str] = None,
|
|
vision_model_keys: Optional[List[str]] = None,
|
|
language_model_keys: Optional[List[str]] = None,
|
|
):
|
|
projector_key = projector_key or "multi_modal_projector"
|
|
vision_model_keys = vision_model_keys or ["vision_tower"]
|
|
language_model_keys = language_model_keys or ["language_model"]
|
|
COMPOSITE_MODELS[model_type] = CompositeModel(
|
|
model_type=model_type,
|
|
projector_key=projector_key,
|
|
vision_model_keys=vision_model_keys,
|
|
language_model_keys=language_model_keys,
|
|
)
|
|
|
|
|
|
class LlavaMultiModalProjectorForYiVL(torch.nn.Module):
|
|
def __init__(self, config: "LlavaConfig") -> None:
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
if config is None:
|
|
return
|
|
|
|
self.linear_1 = torch.nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
|
|
self.linear_2 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True)
|
|
self.linear_3 = torch.nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
|
|
self.linear_4 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True)
|
|
self.act = ACT2FN[config.projector_hidden_act]
|
|
|
|
def forward(self, image_features: "torch.Tensor") -> "torch.Tensor":
|
|
hidden_states = self.linear_1(image_features)
|
|
hidden_states = self.linear_2(hidden_states)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states = self.linear_3(hidden_states)
|
|
hidden_states = self.linear_4(hidden_states)
|
|
if hidden_states.dtype == torch.float32:
|
|
if torch.is_autocast_enabled():
|
|
target_dtype = torch.get_autocast_gpu_dtype()
|
|
elif hasattr(self.config, "_pre_quantization_dtype"):
|
|
target_dtype = self.config._pre_quantization_dtype
|
|
else:
|
|
target_dtype = self.linear_1.weight.dtype
|
|
|
|
transformers_logger.warning_once("The hidden states seems to be silently casted in float32.")
|
|
hidden_states = hidden_states.to(target_dtype)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class LlavaMultiModalProjectorForYiVLForVLLM(LlavaMultiModalProjectorForYiVL):
|
|
def __init__(self, vision_hidden_size: int, text_hidden_size: int, projector_hidden_act: str) -> None:
|
|
super().__init__(config=None)
|
|
|
|
self.linear_1 = torch.nn.Linear(vision_hidden_size, text_hidden_size, bias=True)
|
|
self.linear_2 = torch.nn.LayerNorm(text_hidden_size, bias=True)
|
|
self.linear_3 = torch.nn.Linear(text_hidden_size, text_hidden_size, bias=True)
|
|
self.linear_4 = torch.nn.LayerNorm(text_hidden_size, bias=True)
|
|
self.act = ACT2FN[projector_hidden_act]
|
|
|
|
|
|
def autocast_projector_dtype(model: "PreTrainedModel", model_args: "ModelArguments") -> None:
|
|
r"""
|
|
Casts projector output to half precision for fine-tuning quantized VLMs.
|
|
"""
|
|
|
|
def _mm_projector_forward_post_hook(
|
|
module: "torch.nn.Module", args: Tuple["torch.Tensor"], output: "torch.Tensor"
|
|
) -> "torch.Tensor":
|
|
return output.to(model_args.compute_dtype)
|
|
|
|
if getattr(model, "quantization_method", None):
|
|
model_type = getattr(model.config, "model_type", None)
|
|
if model_type in COMPOSITE_MODELS:
|
|
mm_projector = COMPOSITE_MODELS[model_type].get_projector(model)
|
|
else:
|
|
return
|
|
|
|
logger.info_rank0(f"Casting multimodal projector outputs in {model_args.compute_dtype}.")
|
|
mm_projector.register_forward_hook(_mm_projector_forward_post_hook)
|
|
|
|
|
|
def configure_visual_model(config: "PretrainedConfig") -> None:
|
|
r"""
|
|
Patches VLMs before loading them.
|
|
"""
|
|
if getattr(config, "text_config", None) and not getattr(config, "hidden_size", None):
|
|
# required for ds zero3 and valuehead models
|
|
setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None))
|
|
|
|
if getattr(config, "is_yi_vl_derived_model", None):
|
|
logger.info_rank0("Detected Yi-VL model, applying projector patch.")
|
|
transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVL
|
|
|
|
|
|
def get_forbidden_modules(config: "PretrainedConfig", finetuning_args: "FinetuningArguments") -> Set[str]:
|
|
r"""
|
|
Freezes vision tower and language model for VLM full/freeze tuning.
|
|
"""
|
|
model_type = getattr(config, "model_type", None)
|
|
forbidden_modules = set()
|
|
if model_type in COMPOSITE_MODELS:
|
|
if finetuning_args.freeze_vision_tower:
|
|
vision_model_keys = COMPOSITE_MODELS[model_type].vision_model_keys
|
|
logger.info_rank0(f"Set vision model not trainable: {vision_model_keys}.")
|
|
forbidden_modules.update(vision_model_keys)
|
|
|
|
if finetuning_args.freeze_multi_modal_projector:
|
|
projector_key = COMPOSITE_MODELS[model_type].projector_key
|
|
logger.info_rank0(f"Set multi model projector not trainable: {projector_key}.")
|
|
forbidden_modules.add(projector_key)
|
|
|
|
if finetuning_args.train_mm_proj_only:
|
|
language_model_keys = COMPOSITE_MODELS[model_type].language_model_keys
|
|
logger.info_rank0(f"Set language model not trainable: {language_model_keys}.")
|
|
forbidden_modules.update(language_model_keys)
|
|
|
|
return forbidden_modules
|
|
|
|
|
|
def get_image_seqlen(config: "PretrainedConfig") -> int:
|
|
r"""
|
|
Computes the number of special tokens per image.
|
|
"""
|
|
model_type = getattr(config, "model_type", None)
|
|
if model_type == "llava":
|
|
image_seqlen = (config.vision_config.image_size // config.vision_config.patch_size) ** 2
|
|
if getattr(config, "vision_feature_select_strategy", "default") == "full": # add [CLS] token
|
|
image_seqlen += 1
|
|
elif model_type == "paligemma":
|
|
image_seqlen = config.vision_config.num_image_tokens
|
|
else:
|
|
image_seqlen = -1
|
|
|
|
return image_seqlen
|
|
|
|
|
|
def get_patch_size(config: "PretrainedConfig", processor: "ProcessorMixin") -> int:
|
|
r"""
|
|
Computes the patch size of the vit.
|
|
"""
|
|
patch_size = getattr(config.vision_config, "patch_size", getattr(processor, "patch_size", -1))
|
|
return patch_size
|
|
|
|
|
|
def get_vision_feature_select_strategy(config: "PretrainedConfig", processor: "ProcessorMixin") -> int:
|
|
r"""
|
|
Get the vision_feature_select_strategy.
|
|
"""
|
|
vision_feature_select_strategy = getattr(
|
|
config, "vision_feature_select_strategy", getattr(processor, "vision_feature_select_strategy", "default")
|
|
)
|
|
return vision_feature_select_strategy
|
|
|
|
|
|
def patch_target_modules(
|
|
config: "PretrainedConfig", finetuning_args: "FinetuningArguments", target_modules: Sequence[str]
|
|
) -> Union[str, List[str]]:
|
|
r"""
|
|
Freezes vision tower for VLM LoRA tuning.
|
|
"""
|
|
model_type = getattr(config, "model_type", None)
|
|
vit_model_type = getattr(getattr(config, "vision_config", None), "model_type", None)
|
|
if finetuning_args.freeze_vision_tower:
|
|
if model_type in COMPOSITE_MODELS:
|
|
vision_model_keys = COMPOSITE_MODELS[model_type].vision_model_keys
|
|
logger.info_rank0(f"Set vision model not trainable: {vision_model_keys}.")
|
|
vision_model_keys = "|".join(vision_model_keys)
|
|
target_modules = "|".join(target_modules)
|
|
return f"^(?!.*{vision_model_keys}).*(?:{target_modules}).*"
|
|
else:
|
|
return target_modules
|
|
else:
|
|
if model_type == "qwen2_vl": # avoid attaching lora to Conv3D layer
|
|
return "^(?!.*patch_embed).*(?:{}).*".format("|".join(target_modules))
|
|
elif vit_model_type == "pixtral":
|
|
return "^(?!.*patch_conv).*(?:{}).*".format("|".join(target_modules))
|
|
else:
|
|
return target_modules
|
|
|
|
|
|
_register_composite_model(
|
|
model_type="llava",
|
|
)
|
|
|
|
|
|
_register_composite_model(
|
|
model_type="llava_next",
|
|
)
|
|
|
|
|
|
_register_composite_model(
|
|
model_type="llava_next_video",
|
|
)
|
|
|
|
|
|
_register_composite_model(
|
|
model_type="paligemma",
|
|
)
|
|
|
|
|
|
_register_composite_model(
|
|
model_type="video_llava",
|
|
)
|
|
|
|
|
|
_register_composite_model(
|
|
model_type="mllama",
|
|
vision_model_keys=["vision_model"],
|
|
)
|
|
|
|
|
|
_register_composite_model(
|
|
model_type="qwen2_vl",
|
|
projector_key="visual.merger",
|
|
vision_model_keys=["visual.patch_embed", "visual.blocks"],
|
|
language_model_keys=["model", "lm_head"],
|
|
)
|