mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-04 20:52:59 +08:00
133 lines
5.7 KiB
Python
133 lines
5.7 KiB
Python
import json
|
|
import os
|
|
from types import MethodType
|
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import Seq2SeqTrainer
|
|
|
|
from ...extras.constants import IGNORE_INDEX
|
|
from ...extras.logging import get_logger
|
|
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import ProcessorMixin
|
|
from transformers.trainer import PredictionOutput
|
|
|
|
from ...hparams import FinetuningArguments
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
class CustomSeq2SeqTrainer(Seq2SeqTrainer):
|
|
r"""
|
|
Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE.
|
|
"""
|
|
|
|
def __init__(
|
|
self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs
|
|
) -> None:
|
|
super().__init__(**kwargs)
|
|
self.finetuning_args = finetuning_args
|
|
self.processor = processor
|
|
if finetuning_args.use_badam:
|
|
from badam import clip_grad_norm_for_sparse_tensor
|
|
|
|
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
|
|
|
def create_optimizer(self) -> "torch.optim.Optimizer":
|
|
if self.optimizer is None:
|
|
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
|
return super().create_optimizer()
|
|
|
|
def create_scheduler(
|
|
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
|
) -> "torch.optim.lr_scheduler.LRScheduler":
|
|
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
|
return super().create_scheduler(num_training_steps, optimizer)
|
|
|
|
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
|
|
super()._save(output_dir, state_dict)
|
|
if self.processor is not None:
|
|
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
|
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
|
|
|
def prediction_step(
|
|
self,
|
|
model: "torch.nn.Module",
|
|
inputs: Dict[str, Union[torch.Tensor, Any]],
|
|
prediction_loss_only: bool,
|
|
ignore_keys: Optional[List[str]] = None,
|
|
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
|
|
r"""
|
|
Removes the prompt part in the generated tokens.
|
|
|
|
Subclass and override to inject custom behavior.
|
|
"""
|
|
labels = inputs["labels"].detach().clone() if "labels" in inputs else None # backup labels
|
|
if self.args.predict_with_generate:
|
|
assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor."
|
|
prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1)
|
|
if prompt_len > label_len:
|
|
inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"])
|
|
if label_len > prompt_len: # truncate the labels instead of padding the inputs (llama2 fp16 compatibility)
|
|
inputs["labels"] = inputs["labels"][:, :prompt_len]
|
|
|
|
loss, generated_tokens, _ = super().prediction_step( # ignore the returned labels (may be truncated)
|
|
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
|
|
)
|
|
if generated_tokens is not None and self.args.predict_with_generate:
|
|
generated_tokens[:, :prompt_len] = self.tokenizer.pad_token_id
|
|
generated_tokens = generated_tokens.contiguous()
|
|
|
|
return loss, generated_tokens, labels
|
|
|
|
def _pad_tensors_to_target_len(self, src_tensor: torch.Tensor, tgt_tensor: torch.Tensor) -> torch.Tensor:
|
|
r"""
|
|
Pads the tensor to the same length as the target tensor.
|
|
"""
|
|
assert self.tokenizer.pad_token_id is not None, "Pad token is required."
|
|
padded_tensor = self.tokenizer.pad_token_id * torch.ones_like(tgt_tensor)
|
|
padded_tensor[:, -src_tensor.shape[-1] :] = src_tensor # adopt left-padding
|
|
return padded_tensor.contiguous() # in contiguous memory
|
|
|
|
def save_predictions(self, predict_results: "PredictionOutput") -> None:
|
|
r"""
|
|
Saves model predictions to `output_dir`.
|
|
|
|
A custom behavior that not contained in Seq2SeqTrainer.
|
|
"""
|
|
if not self.is_world_process_zero():
|
|
return
|
|
|
|
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
|
|
logger.info(f"Saving prediction results to {output_prediction_file}")
|
|
|
|
labels = np.where(
|
|
predict_results.label_ids != IGNORE_INDEX, predict_results.label_ids, self.tokenizer.pad_token_id
|
|
)
|
|
preds = np.where(
|
|
predict_results.predictions != IGNORE_INDEX, predict_results.predictions, self.tokenizer.pad_token_id
|
|
)
|
|
|
|
for i in range(len(preds)):
|
|
pad_len = np.nonzero(preds[i] != self.tokenizer.pad_token_id)[0]
|
|
if len(pad_len):
|
|
preds[i] = np.concatenate(
|
|
(preds[i][pad_len[0] :], preds[i][: pad_len[0]]), axis=-1
|
|
) # move pad token to last
|
|
|
|
decoded_labels = self.tokenizer.batch_decode(
|
|
labels, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
|
)
|
|
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
|
|
|
with open(output_prediction_file, "w", encoding="utf-8") as writer:
|
|
res: List[str] = []
|
|
for label, pred in zip(decoded_labels, decoded_preds):
|
|
res.append(json.dumps({"label": label, "predict": pred}, ensure_ascii=False))
|
|
writer.write("\n".join(res))
|