mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-02 11:42:49 +08:00
374 lines
16 KiB
Python
374 lines
16 KiB
Python
# Copyright 2024 EleutherAI, HuggingFace Inc., Yukang Chen, and the LlamaFactory team.
|
|
#
|
|
# This code is based on the EleutherAI's GPT-NeoX and the HuggingFace's Transformers libraries.
|
|
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llama/modeling_llama.py
|
|
# This code is also inspired by the original LongLoRA implementation.
|
|
# https://github.com/dvlab-research/LongLoRA/blob/main/llama_attn_replace.py
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import math
|
|
from typing import TYPE_CHECKING, Optional, Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import transformers
|
|
from transformers.models.llama.modeling_llama import (
|
|
Cache,
|
|
LlamaAttention,
|
|
LlamaFlashAttention2,
|
|
LlamaSdpaAttention,
|
|
apply_rotary_pos_emb,
|
|
repeat_kv,
|
|
)
|
|
from transformers.utils.versions import require_version
|
|
|
|
from ...extras import logging
|
|
from ...extras.constants import SUPPORTED_CLASS_FOR_S2ATTN
|
|
from ...extras.packages import is_transformers_version_greater_than
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import PretrainedConfig
|
|
|
|
from ...hparams import ModelArguments
|
|
|
|
|
|
transformers_logger = transformers.utils.logging.get_logger(__name__)
|
|
|
|
|
|
# Modified from:
|
|
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llama/modeling_llama.py
|
|
def llama_attention_forward(
|
|
self: "LlamaAttention",
|
|
hidden_states: "torch.Tensor",
|
|
attention_mask: Optional["torch.Tensor"] = None,
|
|
position_ids: Optional["torch.LongTensor"] = None,
|
|
past_key_value: Optional["Cache"] = None,
|
|
output_attentions: bool = False,
|
|
cache_position: Optional["torch.LongTensor"] = None,
|
|
position_embeddings: Optional[Tuple["torch.Tensor", "torch.Tensor"]] = None,
|
|
**kwargs,
|
|
) -> Tuple["torch.Tensor", Optional["torch.Tensor"], Optional[Tuple["torch.Tensor"]]]:
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
query_states: "torch.Tensor" = self.q_proj(hidden_states)
|
|
key_states: "torch.Tensor" = self.k_proj(hidden_states)
|
|
value_states: "torch.Tensor" = self.v_proj(hidden_states)
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
if position_embeddings is None:
|
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
|
else:
|
|
cos, sin = position_embeddings
|
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
|
|
if past_key_value is not None:
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
if getattr(self.config, "group_size_ratio", None) and self.training: # shift
|
|
groupsz = int(q_len * getattr(self.config, "group_size_ratio"))
|
|
assert q_len % groupsz == 0, f"q_len {q_len} should be divisible by group size {groupsz}."
|
|
num_groups = q_len // groupsz
|
|
|
|
def shift(state: "torch.Tensor") -> "torch.Tensor":
|
|
state = state.transpose(1, 2) # output: (bsz, seq_len, n_heads, head_dim)
|
|
state = torch.cat(
|
|
(state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)),
|
|
dim=2,
|
|
)
|
|
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim).transpose(1, 2)
|
|
|
|
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states)
|
|
if attention_mask is not None:
|
|
attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1)
|
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
|
|
if attention_mask is not None: # no matter the length, we just slice it
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
|
attn_weights = attn_weights + causal_mask
|
|
|
|
# upcast attention to fp32
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
|
attn_output = torch.matmul(attn_weights, value_states) # (bsz, :, seq_len, :) or (bsz * n_group, :, groupsz, :)
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
|
|
if getattr(self.config, "group_size_ratio", None) and self.training: # shift back
|
|
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
|
|
attn_output = torch.cat(
|
|
(
|
|
attn_output[:, :, : self.num_heads // 2],
|
|
attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1),
|
|
),
|
|
dim=2,
|
|
)
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
|
|
return attn_output, attn_weights, past_key_value
|
|
|
|
|
|
# Modified from:
|
|
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llama/modeling_llama.py
|
|
def llama_flash_attention_2_forward(
|
|
self: "LlamaFlashAttention2",
|
|
hidden_states: "torch.Tensor",
|
|
attention_mask: Optional["torch.Tensor"] = None,
|
|
position_ids: Optional["torch.LongTensor"] = None,
|
|
past_key_value: Optional["Cache"] = None,
|
|
output_attentions: bool = False,
|
|
cache_position: Optional["torch.LongTensor"] = None,
|
|
position_embeddings: Optional[Tuple["torch.Tensor", "torch.Tensor"]] = None,
|
|
**kwargs,
|
|
) -> Tuple["torch.Tensor", Optional["torch.Tensor"], Optional[Tuple["torch.Tensor"]]]:
|
|
# LlamaFlashAttention2 attention does not support output_attentions
|
|
output_attentions = False
|
|
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
query_states: "torch.Tensor" = self.q_proj(hidden_states)
|
|
key_states: "torch.Tensor" = self.k_proj(hidden_states)
|
|
value_states: "torch.Tensor" = self.v_proj(hidden_states)
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
if position_embeddings is None:
|
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
|
else:
|
|
cos, sin = position_embeddings
|
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
|
|
if past_key_value is not None:
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
# FlashAttention requires the input to have the shape (bsz, seq_len, n_heads, head_dim)
|
|
query_states = query_states.transpose(1, 2)
|
|
key_states = key_states.transpose(1, 2)
|
|
value_states = value_states.transpose(1, 2)
|
|
|
|
dropout_rate = self.attention_dropout if self.training else 0.0
|
|
|
|
input_dtype = query_states.dtype
|
|
if input_dtype == torch.float32:
|
|
if torch.is_autocast_enabled():
|
|
target_dtype = torch.get_autocast_gpu_dtype()
|
|
elif hasattr(self.config, "_pre_quantization_dtype"):
|
|
target_dtype = self.config._pre_quantization_dtype
|
|
else:
|
|
target_dtype = self.q_proj.weight.dtype
|
|
|
|
transformers_logger.warning_once("The input hidden states seems to be silently casted in float32.")
|
|
query_states = query_states.to(target_dtype)
|
|
key_states = key_states.to(target_dtype)
|
|
value_states = value_states.to(target_dtype)
|
|
|
|
if getattr(self.config, "group_size_ratio", None) and self.training: # shift
|
|
groupsz = int(q_len * getattr(self.config, "group_size_ratio"))
|
|
assert q_len % groupsz == 0, f"q_len {q_len} should be divisible by group size {groupsz}."
|
|
num_groups = q_len // groupsz
|
|
|
|
def shift(state: "torch.Tensor") -> "torch.Tensor":
|
|
state = torch.cat(
|
|
(state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)),
|
|
dim=2,
|
|
)
|
|
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim)
|
|
|
|
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states)
|
|
if attention_mask is not None:
|
|
attention_mask = attention_mask[:, :groupsz].repeat(num_groups, 1)
|
|
|
|
if is_transformers_version_greater_than("4.43.0"):
|
|
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
|
|
|
attn_output: "torch.Tensor" = _flash_attention_forward(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
attention_mask,
|
|
query_states.size(1),
|
|
dropout=dropout_rate,
|
|
sliding_window=getattr(self, "sliding_window", None),
|
|
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
|
is_causal=self.is_causal,
|
|
)
|
|
else:
|
|
attn_output: "torch.Tensor" = self._flash_attention_forward(
|
|
query_states, key_states, value_states, attention_mask, query_states.size(1), dropout=dropout_rate
|
|
)
|
|
|
|
if getattr(self.config, "group_size_ratio", None) and self.training: # shift back
|
|
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
|
|
attn_output = torch.cat(
|
|
(
|
|
attn_output[:, :, : self.num_heads // 2],
|
|
attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1),
|
|
),
|
|
dim=2,
|
|
)
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
|
|
return attn_output, attn_weights, past_key_value
|
|
|
|
|
|
# Modified from:
|
|
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llama/modeling_llama.py
|
|
def llama_sdpa_attention_forward(
|
|
self: "LlamaSdpaAttention",
|
|
hidden_states: "torch.Tensor",
|
|
attention_mask: Optional["torch.Tensor"] = None,
|
|
position_ids: Optional["torch.LongTensor"] = None,
|
|
past_key_value: Optional["Cache"] = None,
|
|
output_attentions: bool = False,
|
|
cache_position: Optional["torch.LongTensor"] = None,
|
|
position_embeddings: Optional[Tuple["torch.Tensor", "torch.Tensor"]] = None,
|
|
**kwargs,
|
|
) -> Tuple["torch.Tensor", Optional["torch.Tensor"], Optional[Tuple["torch.Tensor"]]]:
|
|
if output_attentions:
|
|
transformers_logger.warning_once(
|
|
"SDPA does not support `output_attentions=True`. Falling back to the vanilla attention"
|
|
)
|
|
return llama_attention_forward(
|
|
self,
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
cache_position=cache_position,
|
|
**kwargs,
|
|
)
|
|
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
query_states: "torch.Tensor" = self.q_proj(hidden_states)
|
|
key_states: "torch.Tensor" = self.k_proj(hidden_states)
|
|
value_states: "torch.Tensor" = self.v_proj(hidden_states)
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
if position_embeddings is None:
|
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
|
else:
|
|
cos, sin = position_embeddings
|
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
|
|
if past_key_value is not None:
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
if getattr(self.config, "group_size_ratio", None) and self.training: # shift
|
|
groupsz = int(q_len * getattr(self.config, "group_size_ratio"))
|
|
assert q_len % groupsz == 0, f"q_len {q_len} should be divisible by group size {groupsz}."
|
|
num_groups = q_len // groupsz
|
|
|
|
def shift(state: "torch.Tensor") -> "torch.Tensor":
|
|
state = state.transpose(1, 2) # output: (bsz, seq_len, n_heads, head_dim)
|
|
state = torch.cat(
|
|
(state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)),
|
|
dim=2,
|
|
)
|
|
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim).transpose(1, 2)
|
|
|
|
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states)
|
|
if attention_mask is not None:
|
|
attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1)
|
|
|
|
causal_mask = attention_mask
|
|
if attention_mask is not None:
|
|
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
|
|
|
if query_states.device.type == "cuda" and causal_mask is not None: # avoid pytorch bug
|
|
query_states = query_states.contiguous()
|
|
key_states = key_states.contiguous()
|
|
value_states = value_states.contiguous()
|
|
|
|
is_causal = True if causal_mask is None and q_len > 1 else False
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
attn_mask=causal_mask,
|
|
dropout_p=self.attention_dropout if self.training else 0.0,
|
|
is_causal=is_causal,
|
|
)
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
|
|
if getattr(self.config, "group_size_ratio", None) and self.training: # shift back
|
|
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
|
|
attn_output = torch.cat(
|
|
(
|
|
attn_output[:, :, : self.num_heads // 2],
|
|
attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1),
|
|
),
|
|
dim=2,
|
|
)
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
return attn_output, None, past_key_value
|
|
|
|
|
|
def _apply_llama_patch() -> None:
|
|
require_version("transformers>=4.41.2,<=4.46.1", "To fix: pip install transformers>=4.41.2,<=4.46.1")
|
|
LlamaAttention.forward = llama_attention_forward
|
|
LlamaFlashAttention2.forward = llama_flash_attention_2_forward
|
|
LlamaSdpaAttention.forward = llama_sdpa_attention_forward
|
|
|
|
|
|
def configure_longlora(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
|
|
if not is_trainable or not model_args.shift_attn:
|
|
return
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
if getattr(config, "model_type", None) in SUPPORTED_CLASS_FOR_S2ATTN:
|
|
setattr(config, "group_size_ratio", 0.25)
|
|
_apply_llama_patch()
|
|
logger.info_rank0("Using shift short attention with group_size_ratio=1/4.")
|
|
else:
|
|
logger.warning_rank0("Current model does not support shift short attention.")
|