mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-03 20:22:49 +08:00
102 lines
3.1 KiB
Python
102 lines
3.1 KiB
Python
from typing import TYPE_CHECKING, Dict
|
|
import gradio as gr
|
|
|
|
from llmtuner.webui.common import list_dataset, DEFAULT_DATA_DIR
|
|
from llmtuner.webui.components.data import create_preview_box
|
|
from llmtuner.webui.utils import can_preview, get_preview
|
|
|
|
if TYPE_CHECKING:
|
|
from gradio.components import Component
|
|
from llmtuner.webui.runner import Runner
|
|
|
|
|
|
def create_eval_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[str, "Component"]:
|
|
with gr.Row():
|
|
dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=2)
|
|
dataset = gr.Dropdown(multiselect=True, scale=4)
|
|
data_preview_btn = gr.Button(interactive=False, scale=1)
|
|
|
|
preview_box, preview_count, preview_samples, close_btn = create_preview_box()
|
|
|
|
dataset_dir.change(list_dataset, [dataset_dir], [dataset])
|
|
dataset.change(can_preview, [dataset_dir, dataset], [data_preview_btn])
|
|
data_preview_btn.click(
|
|
get_preview,
|
|
[dataset_dir, dataset],
|
|
[preview_count, preview_samples, preview_box],
|
|
queue=False
|
|
)
|
|
|
|
with gr.Row():
|
|
cutoff_len = gr.Slider(value=1024, minimum=4, maximum=8192, step=1)
|
|
max_samples = gr.Textbox(value="100000")
|
|
batch_size = gr.Slider(value=8, minimum=1, maximum=512, step=1)
|
|
predict = gr.Checkbox(value=True)
|
|
|
|
with gr.Row():
|
|
max_new_tokens = gr.Slider(10, 2048, value=128, step=1)
|
|
top_p = gr.Slider(0.01, 1, value=0.7, step=0.01)
|
|
temperature = gr.Slider(0.01, 1.5, value=0.95, step=0.01)
|
|
|
|
with gr.Row():
|
|
cmd_preview_btn = gr.Button()
|
|
start_btn = gr.Button()
|
|
stop_btn = gr.Button()
|
|
|
|
with gr.Row():
|
|
process_bar = gr.Slider(visible=False, interactive=False)
|
|
|
|
with gr.Box():
|
|
output_box = gr.Markdown()
|
|
|
|
input_components = [
|
|
top_elems["lang"],
|
|
top_elems["model_name"],
|
|
top_elems["checkpoints"],
|
|
top_elems["finetuning_type"],
|
|
top_elems["quantization_bit"],
|
|
top_elems["template"],
|
|
top_elems["system_prompt"],
|
|
top_elems["flash_attn"],
|
|
top_elems["shift_attn"],
|
|
top_elems["rope_scaling"],
|
|
dataset_dir,
|
|
dataset,
|
|
cutoff_len,
|
|
max_samples,
|
|
batch_size,
|
|
predict,
|
|
max_new_tokens,
|
|
top_p,
|
|
temperature
|
|
]
|
|
|
|
output_components = [
|
|
output_box,
|
|
process_bar
|
|
]
|
|
|
|
cmd_preview_btn.click(runner.preview_eval, input_components, output_components)
|
|
start_btn.click(runner.run_eval, input_components, output_components)
|
|
stop_btn.click(runner.set_abort, queue=False)
|
|
|
|
return dict(
|
|
dataset_dir=dataset_dir,
|
|
dataset=dataset,
|
|
data_preview_btn=data_preview_btn,
|
|
preview_count=preview_count,
|
|
preview_samples=preview_samples,
|
|
close_btn=close_btn,
|
|
cutoff_len=cutoff_len,
|
|
max_samples=max_samples,
|
|
batch_size=batch_size,
|
|
predict=predict,
|
|
max_new_tokens=max_new_tokens,
|
|
top_p=top_p,
|
|
temperature=temperature,
|
|
cmd_preview_btn=cmd_preview_btn,
|
|
start_btn=start_btn,
|
|
stop_btn=stop_btn,
|
|
output_box=output_box
|
|
)
|