mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-02 19:52:50 +08:00
151 lines
6.3 KiB
Python
151 lines
6.3 KiB
Python
import os
|
|
import random
|
|
from enum import Enum, unique
|
|
from typing import TYPE_CHECKING, Any, Dict, List
|
|
|
|
import torch
|
|
from datasets import load_dataset
|
|
from transformers import BitsAndBytesConfig, GPTQConfig
|
|
from transformers.integrations import is_deepspeed_zero3_enabled
|
|
from transformers.modeling_utils import is_fsdp_enabled
|
|
from transformers.utils.versions import require_version
|
|
|
|
from ...extras.constants import FILEEXT2TYPE
|
|
from ...extras.logging import get_logger
|
|
from ...extras.misc import get_current_device
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import PretrainedConfig, PreTrainedTokenizer
|
|
|
|
from ...hparams import ModelArguments
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
@unique
|
|
class QuantizationMethod(str, Enum):
|
|
r"""
|
|
Borrowed from `transformers.utils.quantization_config.QuantizationMethod`.
|
|
"""
|
|
|
|
BITS_AND_BYTES = "bitsandbytes"
|
|
GPTQ = "gptq"
|
|
AWQ = "awq"
|
|
AQLM = "aqlm"
|
|
QUANTO = "quanto"
|
|
EETQ = "eetq"
|
|
HQQ = "hqq"
|
|
|
|
|
|
def _get_quantization_dataset(tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments") -> List[str]:
|
|
r"""
|
|
Inspired by: https://github.com/huggingface/optimum/blob/v1.16.0/optimum/gptq/data.py#L133
|
|
TODO: remove tokenizer.decode() https://github.com/huggingface/optimum/pull/1600
|
|
"""
|
|
if os.path.isfile(model_args.export_quantization_dataset):
|
|
data_path = FILEEXT2TYPE.get(model_args.export_quantization_dataset.split(".")[-1], None)
|
|
data_files = model_args.export_quantization_dataset
|
|
else:
|
|
data_path = model_args.export_quantization_dataset
|
|
data_files = None
|
|
|
|
dataset = load_dataset(path=data_path, data_files=data_files, split="train", cache_dir=model_args.cache_dir)
|
|
maxlen = model_args.export_quantization_maxlen
|
|
|
|
samples = []
|
|
for _ in range(model_args.export_quantization_nsamples):
|
|
while True:
|
|
sample_idx = random.randint(0, len(dataset) - 1)
|
|
sample: Dict[str, torch.Tensor] = tokenizer(dataset[sample_idx]["text"], return_tensors="pt")
|
|
if sample["input_ids"].size(1) >= maxlen:
|
|
break # TODO: fix large maxlen
|
|
|
|
word_idx = random.randint(0, sample["input_ids"].size(1) - maxlen - 1)
|
|
input_ids = sample["input_ids"][:, word_idx : word_idx + maxlen]
|
|
samples.append(tokenizer.decode(input_ids[0].tolist(), skip_special_tokens=True))
|
|
|
|
return samples
|
|
|
|
|
|
def configure_quantization(
|
|
config: "PretrainedConfig",
|
|
tokenizer: "PreTrainedTokenizer",
|
|
model_args: "ModelArguments",
|
|
init_kwargs: Dict[str, Any],
|
|
) -> None:
|
|
r"""
|
|
Priority: PTQ-quantized (training) > AutoGPTQ (export) > Bitsandbytes (training)
|
|
"""
|
|
if getattr(config, "quantization_config", None): # ptq
|
|
if is_deepspeed_zero3_enabled():
|
|
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantized models.")
|
|
|
|
if model_args.quantization_device_map != "auto":
|
|
init_kwargs["device_map"] = {"": get_current_device()}
|
|
|
|
quantization_config: Dict[str, Any] = getattr(config, "quantization_config", None)
|
|
quant_method = quantization_config.get("quant_method", "")
|
|
|
|
if quant_method == QuantizationMethod.GPTQ:
|
|
require_version("auto_gptq>=0.5.0", "To fix: pip install auto_gptq>=0.5.0")
|
|
quantization_config.pop("disable_exllama", None) # remove deprecated args
|
|
quantization_config["use_exllama"] = False # disable exllama
|
|
|
|
if quant_method == QuantizationMethod.AWQ:
|
|
require_version("autoawq", "To fix: pip install autoawq")
|
|
|
|
if quant_method == QuantizationMethod.AQLM:
|
|
require_version("transformers>=4.39.0", "To fix: pip install transformers>=4.39.0")
|
|
require_version("aqlm>=1.1.0", "To fix: pip install aqlm[gpu]>=1.1.0")
|
|
quantization_config["bits"] = 2
|
|
|
|
quant_bits = quantization_config.get("bits", "?")
|
|
logger.info("Loading {}-bit {}-quantized model.".format(quant_bits, quant_method.upper()))
|
|
|
|
elif model_args.export_quantization_bit is not None: # auto-gptq
|
|
require_version("optimum>=1.16.0", "To fix: pip install optimum>=1.16.0")
|
|
require_version("auto_gptq>=0.5.0", "To fix: pip install auto_gptq>=0.5.0")
|
|
from accelerate.utils import get_max_memory
|
|
|
|
if getattr(config, "model_type", None) == "chatglm":
|
|
raise ValueError("ChatGLM model is not supported.")
|
|
|
|
init_kwargs["quantization_config"] = GPTQConfig(
|
|
bits=model_args.export_quantization_bit,
|
|
tokenizer=tokenizer,
|
|
dataset=_get_quantization_dataset(tokenizer, model_args),
|
|
)
|
|
init_kwargs["device_map"] = "auto"
|
|
init_kwargs["max_memory"] = get_max_memory()
|
|
logger.info("Quantizing model to {} bit.".format(model_args.export_quantization_bit))
|
|
|
|
elif model_args.quantization_bit is not None: # bnb
|
|
if model_args.quantization_bit == 8:
|
|
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0")
|
|
init_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
|
|
|
|
elif model_args.quantization_bit == 4:
|
|
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
|
|
init_kwargs["quantization_config"] = BitsAndBytesConfig(
|
|
load_in_4bit=True,
|
|
bnb_4bit_compute_dtype=model_args.compute_dtype,
|
|
bnb_4bit_use_double_quant=model_args.double_quantization,
|
|
bnb_4bit_quant_type=model_args.quantization_type,
|
|
bnb_4bit_quant_storage=model_args.compute_dtype, # crucial for fsdp+qlora
|
|
)
|
|
|
|
if is_deepspeed_zero3_enabled() or is_fsdp_enabled() or model_args.quantization_device_map == "auto":
|
|
if model_args.quantization_bit != 4:
|
|
raise ValueError("Only 4-bit quantized model can use auto device map.")
|
|
|
|
require_version("transformers>=4.39.0", "To fix: pip install transformers>=4.39.0")
|
|
require_version("accelerate>=0.28.0", "To fix: pip install accelerate>=0.28.0")
|
|
require_version("bitsandbytes>=0.43.0", "To fix: pip install bitsandbytes>=0.43.0")
|
|
init_kwargs["torch_dtype"] = model_args.compute_dtype # fsdp+qlora requires same dtype
|
|
else:
|
|
init_kwargs["device_map"] = {"": get_current_device()}
|
|
|
|
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
|