mirror of
				https://github.com/hiyouga/LLaMA-Factory.git
				synced 2025-11-04 18:02:19 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			46 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Docker
		
	
	
	
	
	
			
		
		
	
	
			46 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Docker
		
	
	
	
	
	
# Use the Ubuntu 22.04 image with CANN 8.0.rc1
 | 
						|
# More versions can be found at https://hub.docker.com/r/cosdt/cann/tags
 | 
						|
# FROM cosdt/cann:8.0.rc1-910-ubuntu22.04
 | 
						|
FROM cosdt/cann:8.0.rc1-910b-ubuntu22.04
 | 
						|
# FROM cosdt/cann:8.0.rc1-910-openeuler22.03
 | 
						|
# FROM cosdt/cann:8.0.rc1-910b-openeuler22.03
 | 
						|
 | 
						|
# Define environments
 | 
						|
ENV DEBIAN_FRONTEND=noninteractive
 | 
						|
 | 
						|
# Define installation arguments
 | 
						|
ARG INSTALL_DEEPSPEED=false
 | 
						|
ARG PIP_INDEX=https://pypi.org/simple
 | 
						|
ARG TORCH_INDEX=https://download.pytorch.org/whl/cpu
 | 
						|
 | 
						|
# Set the working directory
 | 
						|
WORKDIR /app
 | 
						|
 | 
						|
# Install the requirements
 | 
						|
COPY requirements.txt /app
 | 
						|
RUN pip config set global.index-url "$PIP_INDEX" && \
 | 
						|
    pip config set global.extra-index-url "$TORCH_INDEX" && \
 | 
						|
    python -m pip install --upgrade pip && \
 | 
						|
    python -m pip install -r requirements.txt
 | 
						|
 | 
						|
# Copy the rest of the application into the image
 | 
						|
COPY . /app
 | 
						|
 | 
						|
# Install the LLaMA Factory
 | 
						|
RUN EXTRA_PACKAGES="torch-npu,metrics"; \
 | 
						|
    if [ "$INSTALL_DEEPSPEED" == "true" ]; then \
 | 
						|
        EXTRA_PACKAGES="${EXTRA_PACKAGES},deepspeed"; \
 | 
						|
    fi; \
 | 
						|
    pip install -e ".[$EXTRA_PACKAGES]"
 | 
						|
 | 
						|
# Set up volumes
 | 
						|
VOLUME [ "/root/.cache/huggingface", "/root/.cache/modelscope", "/app/data", "/app/output" ]
 | 
						|
 | 
						|
# Expose port 7860 for the LLaMA Board
 | 
						|
ENV GRADIO_SERVER_PORT 7860
 | 
						|
EXPOSE 7860
 | 
						|
 | 
						|
# Expose port 8000 for the API service
 | 
						|
ENV API_PORT 8000
 | 
						|
EXPOSE 8000
 |