mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-04 12:42:51 +08:00
101 lines
3.8 KiB
Python
101 lines
3.8 KiB
Python
from dataclasses import dataclass, field
|
|
from typing import Literal, Optional
|
|
|
|
|
|
@dataclass
|
|
class DataArguments:
|
|
r"""
|
|
Arguments pertaining to what data we are going to input our model for training and evaluation.
|
|
"""
|
|
|
|
template: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Which template to use for constructing prompts in training and inference."},
|
|
)
|
|
dataset: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "The name of provided dataset(s) to use. Use commas to separate multiple datasets."},
|
|
)
|
|
dataset_dir: str = field(
|
|
default="data",
|
|
metadata={"help": "Path to the folder containing the datasets."},
|
|
)
|
|
split: str = field(
|
|
default="train",
|
|
metadata={"help": "Which dataset split to use for training and evaluation."},
|
|
)
|
|
cutoff_len: int = field(
|
|
default=1024,
|
|
metadata={"help": "The cutoff length of the model inputs after tokenization."},
|
|
)
|
|
reserved_label_len: int = field(
|
|
default=1,
|
|
metadata={"help": "The minimum cutoff length reserved for label after tokenization."},
|
|
)
|
|
train_on_prompt: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether to disable the mask on the prompt or not."},
|
|
)
|
|
streaming: bool = field(
|
|
default=False,
|
|
metadata={"help": "Enable dataset streaming."},
|
|
)
|
|
buffer_size: int = field(
|
|
default=16384,
|
|
metadata={"help": "Size of the buffer to randomly sample examples from in dataset streaming."},
|
|
)
|
|
mix_strategy: Literal["concat", "interleave_under", "interleave_over"] = field(
|
|
default="concat",
|
|
metadata={"help": "Strategy to use in dataset mixing (concat/interleave) (undersampling/oversampling)."},
|
|
)
|
|
interleave_probs: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Probabilities to sample data from datasets. Use commas to separate multiple datasets."},
|
|
)
|
|
overwrite_cache: bool = field(
|
|
default=False,
|
|
metadata={"help": "Overwrite the cached training and evaluation sets."},
|
|
)
|
|
preprocessing_num_workers: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of processes to use for the pre-processing."},
|
|
)
|
|
max_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."},
|
|
)
|
|
eval_num_beams: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`"},
|
|
)
|
|
ignore_pad_token_for_loss: bool = field(
|
|
default=True,
|
|
metadata={
|
|
"help": "Whether or not to ignore the tokens corresponding to padded labels in the loss computation."
|
|
},
|
|
)
|
|
val_size: float = field(
|
|
default=0.0,
|
|
metadata={"help": "Size of the development set, should be an integer or a float in range `[0,1)`."},
|
|
)
|
|
packing: Optional[bool] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "Whether or not to pack the sequences in training. Will automatically enable in pre-training."
|
|
},
|
|
)
|
|
cache_path: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Path to save or load the pre-processed datasets."},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
if self.reserved_label_len >= self.cutoff_len:
|
|
raise ValueError("`reserved_label_len` must be smaller than `cutoff_len`.")
|
|
|
|
if self.streaming and self.val_size > 1e-6 and self.val_size < 1:
|
|
raise ValueError("Streaming mode should have an integer val size.")
|
|
|
|
if self.streaming and self.max_samples is not None:
|
|
raise ValueError("`max_samples` is incompatible with `streaming`.")
|