mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-05 05:02:50 +08:00
206 lines
7.2 KiB
Python
206 lines
7.2 KiB
Python
import asyncio
|
|
import json
|
|
import os
|
|
from contextlib import asynccontextmanager
|
|
from typing import Any, Dict, Sequence
|
|
|
|
from pydantic import BaseModel
|
|
|
|
from ..chat import ChatModel
|
|
from ..extras.misc import torch_gc
|
|
from ..extras.packages import is_fastapi_availble, is_starlette_available, is_uvicorn_available
|
|
from .protocol import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseChoice,
|
|
ChatCompletionResponseStreamChoice,
|
|
ChatCompletionResponseUsage,
|
|
ChatCompletionStreamResponse,
|
|
ChatMessage,
|
|
DeltaMessage,
|
|
Finish,
|
|
ModelCard,
|
|
ModelList,
|
|
Role,
|
|
ScoreEvaluationRequest,
|
|
ScoreEvaluationResponse,
|
|
)
|
|
|
|
|
|
if is_fastapi_availble():
|
|
from fastapi import FastAPI, HTTPException, status
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
|
|
if is_starlette_available():
|
|
from sse_starlette import EventSourceResponse
|
|
|
|
|
|
if is_uvicorn_available():
|
|
import uvicorn
|
|
|
|
|
|
@asynccontextmanager
|
|
async def lifespan(app: "FastAPI"): # collects GPU memory
|
|
yield
|
|
torch_gc()
|
|
|
|
|
|
def dictify(data: "BaseModel") -> Dict[str, Any]:
|
|
try: # pydantic v2
|
|
return data.model_dump(exclude_unset=True)
|
|
except AttributeError: # pydantic v1
|
|
return data.dict(exclude_unset=True)
|
|
|
|
|
|
def jsonify(data: "BaseModel") -> str:
|
|
try: # pydantic v2
|
|
return json.dumps(data.model_dump(exclude_unset=True), ensure_ascii=False)
|
|
except AttributeError: # pydantic v1
|
|
return data.json(exclude_unset=True, ensure_ascii=False)
|
|
|
|
|
|
def create_app(chat_model: "ChatModel") -> "FastAPI":
|
|
app = FastAPI(lifespan=lifespan)
|
|
|
|
app.add_middleware(
|
|
CORSMiddleware,
|
|
allow_origins=["*"],
|
|
allow_credentials=True,
|
|
allow_methods=["*"],
|
|
allow_headers=["*"],
|
|
)
|
|
|
|
semaphore = asyncio.Semaphore(int(os.environ.get("MAX_CONCURRENT", 1)))
|
|
|
|
@app.get("/v1/models", response_model=ModelList)
|
|
async def list_models():
|
|
model_card = ModelCard(id="gpt-3.5-turbo")
|
|
return ModelList(data=[model_card])
|
|
|
|
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse, status_code=status.HTTP_200_OK)
|
|
async def create_chat_completion(request: ChatCompletionRequest):
|
|
if not chat_model.can_generate:
|
|
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
|
|
|
|
if len(request.messages) == 0 or request.messages[-1].role != Role.USER:
|
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request")
|
|
|
|
messages = [dictify(message) for message in request.messages]
|
|
if len(messages) and messages[0]["role"] == Role.SYSTEM:
|
|
system = messages.pop(0)["content"]
|
|
else:
|
|
system = None
|
|
|
|
if len(messages) % 2 == 0:
|
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...")
|
|
|
|
for i in range(len(messages)):
|
|
if messages[i]["role"] == Role.USER:
|
|
if i % 2 == 1:
|
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request")
|
|
elif messages[i]["role"] == Role.ASSISTANT:
|
|
if i % 2 == 0:
|
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request")
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
tools = "" # TODO: add tools
|
|
|
|
async with semaphore:
|
|
loop = asyncio.get_running_loop()
|
|
return await loop.run_in_executor(None, chat_completion, messages, system, tools, request)
|
|
|
|
def chat_completion(messages: Sequence[Dict[str, str]], system: str, tools: str, request: ChatCompletionRequest):
|
|
if request.stream:
|
|
generate = stream_chat_completion(messages, system, tools, request)
|
|
return EventSourceResponse(generate, media_type="text/event-stream")
|
|
|
|
responses = chat_model.chat(
|
|
messages,
|
|
system,
|
|
tools,
|
|
do_sample=request.do_sample,
|
|
temperature=request.temperature,
|
|
top_p=request.top_p,
|
|
max_new_tokens=request.max_tokens,
|
|
num_return_sequences=request.n,
|
|
)
|
|
|
|
prompt_length, response_length = 0, 0
|
|
choices = []
|
|
for i, response in enumerate(responses):
|
|
choices.append(
|
|
ChatCompletionResponseChoice(
|
|
index=i,
|
|
message=ChatMessage(role=Role.ASSISTANT, content=response.response_text),
|
|
finish_reason=Finish.STOP if response.finish_reason == "stop" else Finish.LENGTH,
|
|
)
|
|
)
|
|
prompt_length = response.prompt_length
|
|
response_length += response.response_length
|
|
|
|
usage = ChatCompletionResponseUsage(
|
|
prompt_tokens=prompt_length,
|
|
completion_tokens=response_length,
|
|
total_tokens=prompt_length + response_length,
|
|
)
|
|
|
|
return ChatCompletionResponse(model=request.model, choices=choices, usage=usage)
|
|
|
|
def stream_chat_completion(
|
|
messages: Sequence[Dict[str, str]], system: str, tools: str, request: ChatCompletionRequest
|
|
):
|
|
choice_data = ChatCompletionResponseStreamChoice(
|
|
index=0, delta=DeltaMessage(role=Role.ASSISTANT, content=""), finish_reason=None
|
|
)
|
|
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
|
|
yield jsonify(chunk)
|
|
|
|
for new_text in chat_model.stream_chat(
|
|
messages,
|
|
system,
|
|
tools,
|
|
do_sample=request.do_sample,
|
|
temperature=request.temperature,
|
|
top_p=request.top_p,
|
|
max_new_tokens=request.max_tokens,
|
|
):
|
|
if len(new_text) == 0:
|
|
continue
|
|
|
|
choice_data = ChatCompletionResponseStreamChoice(
|
|
index=0, delta=DeltaMessage(content=new_text), finish_reason=None
|
|
)
|
|
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
|
|
yield jsonify(chunk)
|
|
|
|
choice_data = ChatCompletionResponseStreamChoice(index=0, delta=DeltaMessage(), finish_reason=Finish.STOP)
|
|
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
|
|
yield jsonify(chunk)
|
|
yield "[DONE]"
|
|
|
|
@app.post("/v1/score/evaluation", response_model=ScoreEvaluationResponse, status_code=status.HTTP_200_OK)
|
|
async def create_score_evaluation(request: ScoreEvaluationRequest):
|
|
if chat_model.can_generate:
|
|
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
|
|
|
|
if len(request.messages) == 0:
|
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request")
|
|
|
|
async with semaphore:
|
|
loop = asyncio.get_running_loop()
|
|
return await loop.run_in_executor(None, get_score, request)
|
|
|
|
def get_score(request: ScoreEvaluationRequest):
|
|
scores = chat_model.get_scores(request.messages, max_length=request.max_length)
|
|
return ScoreEvaluationResponse(model=request.model, scores=scores)
|
|
|
|
return app
|
|
|
|
|
|
if __name__ == "__main__":
|
|
chat_model = ChatModel()
|
|
app = create_app(chat_model)
|
|
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("API_PORT", 8000)), workers=1)
|