mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-03 12:12:50 +08:00
do not use pop(key, default) since api assigns None to dict values Former-commit-id: d52fae2fa866afeb6156dc98388ce5cc6d5eca77
307 lines
12 KiB
Python
307 lines
12 KiB
Python
import asyncio
|
|
import concurrent.futures
|
|
import os
|
|
from threading import Thread
|
|
from typing import TYPE_CHECKING, Any, AsyncGenerator, Callable, Dict, List, Optional, Sequence, Tuple, Union
|
|
|
|
import torch
|
|
from transformers import GenerationConfig, TextIteratorStreamer
|
|
|
|
from ..data import get_template_and_fix_tokenizer
|
|
from ..extras.misc import get_logits_processor
|
|
from ..model import load_model, load_tokenizer
|
|
from .base_engine import BaseEngine, Response
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from numpy.typing import NDArray
|
|
from transformers import PreTrainedModel, PreTrainedTokenizer, ProcessorMixin
|
|
from transformers.image_processing_utils import BaseImageProcessor
|
|
from trl import PreTrainedModelWrapper
|
|
|
|
from ..data import Template
|
|
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
|
|
|
|
|
class HuggingfaceEngine(BaseEngine):
|
|
def __init__(
|
|
self,
|
|
model_args: "ModelArguments",
|
|
data_args: "DataArguments",
|
|
finetuning_args: "FinetuningArguments",
|
|
generating_args: "GeneratingArguments",
|
|
) -> None:
|
|
self.can_generate = finetuning_args.stage == "sft"
|
|
tokenizer_module = load_tokenizer(model_args)
|
|
self.tokenizer = tokenizer_module["tokenizer"]
|
|
self.processor = tokenizer_module["processor"]
|
|
self.tokenizer.padding_side = "left" if self.can_generate else "right"
|
|
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
|
|
self.model = load_model(
|
|
self.tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate)
|
|
) # must after fixing tokenizer to resize vocab
|
|
self.generating_args = generating_args.to_dict()
|
|
|
|
@staticmethod
|
|
def _process_args(
|
|
model: "PreTrainedModel",
|
|
tokenizer: "PreTrainedTokenizer",
|
|
processor: Optional["ProcessorMixin"],
|
|
template: "Template",
|
|
generating_args: Dict[str, Any],
|
|
messages: Sequence[Dict[str, str]],
|
|
system: Optional[str] = None,
|
|
tools: Optional[str] = None,
|
|
image: Optional["NDArray"] = None,
|
|
input_kwargs: Optional[Dict[str, Any]] = {},
|
|
) -> Tuple[Dict[str, Any], int]:
|
|
if processor is not None and image is not None and "<image>" not in messages[0]["content"]:
|
|
messages[0]["content"] = "<image>" + messages[0]["content"]
|
|
|
|
paired_messages = messages + [{"role": "assistant", "content": ""}]
|
|
system = system or generating_args["default_system"]
|
|
prompt_ids, _ = template.encode_oneturn(
|
|
tokenizer=tokenizer, messages=paired_messages, system=system, tools=tools
|
|
)
|
|
prompt_length = len(prompt_ids)
|
|
inputs = torch.tensor([prompt_ids], device=model.device)
|
|
|
|
do_sample: Optional[bool] = input_kwargs.pop("do_sample", None)
|
|
temperature: Optional[float] = input_kwargs.pop("temperature", None)
|
|
top_p: Optional[float] = input_kwargs.pop("top_p", None)
|
|
top_k: Optional[float] = input_kwargs.pop("top_k", None)
|
|
num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1)
|
|
repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None)
|
|
length_penalty: Optional[float] = input_kwargs.pop("length_penalty", None)
|
|
max_length: Optional[int] = input_kwargs.pop("max_length", None)
|
|
max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None)
|
|
stop: Optional[Union[str, List[str]]] = input_kwargs.pop("stop", None)
|
|
|
|
if stop is not None:
|
|
raise ValueError("Stop parameter is not supported in Huggingface engine yet.")
|
|
|
|
generating_args = generating_args.copy()
|
|
generating_args.update(
|
|
dict(
|
|
do_sample=do_sample if do_sample is not None else generating_args["do_sample"],
|
|
temperature=temperature if temperature is not None else generating_args["temperature"],
|
|
top_p=top_p if top_p is not None else generating_args["top_p"],
|
|
top_k=top_k if top_k is not None else generating_args["top_k"],
|
|
num_return_sequences=num_return_sequences,
|
|
repetition_penalty=repetition_penalty
|
|
if repetition_penalty is not None
|
|
else generating_args["repetition_penalty"],
|
|
length_penalty=length_penalty if length_penalty is not None else generating_args["length_penalty"],
|
|
eos_token_id=[tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids,
|
|
pad_token_id=tokenizer.pad_token_id,
|
|
)
|
|
)
|
|
|
|
if isinstance(num_return_sequences, int) and num_return_sequences > 1: # do_sample needs temperature > 0
|
|
generating_args["do_sample"] = True
|
|
generating_args["temperature"] = generating_args["temperature"] or 1.0
|
|
|
|
if not generating_args["temperature"]:
|
|
generating_args["do_sample"] = False
|
|
|
|
if not generating_args["do_sample"]:
|
|
generating_args.pop("temperature", None)
|
|
generating_args.pop("top_p", None)
|
|
|
|
if max_length:
|
|
generating_args.pop("max_new_tokens", None)
|
|
generating_args["max_length"] = max_length
|
|
|
|
if max_new_tokens:
|
|
generating_args.pop("max_length", None)
|
|
generating_args["max_new_tokens"] = max_new_tokens
|
|
|
|
gen_kwargs = dict(
|
|
inputs=inputs,
|
|
generation_config=GenerationConfig(**generating_args),
|
|
logits_processor=get_logits_processor(),
|
|
)
|
|
|
|
if processor is not None and image is not None:
|
|
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
|
|
pixel_values: "torch.Tensor" = image_processor(image, return_tensors="pt")["pixel_values"]
|
|
gen_kwargs["pixel_values"] = pixel_values.to(model.device)
|
|
|
|
return gen_kwargs, prompt_length
|
|
|
|
@staticmethod
|
|
@torch.inference_mode()
|
|
def _chat(
|
|
model: "PreTrainedModel",
|
|
tokenizer: "PreTrainedTokenizer",
|
|
processor: Optional["ProcessorMixin"],
|
|
template: "Template",
|
|
generating_args: Dict[str, Any],
|
|
messages: Sequence[Dict[str, str]],
|
|
system: Optional[str] = None,
|
|
tools: Optional[str] = None,
|
|
image: Optional["NDArray"] = None,
|
|
input_kwargs: Optional[Dict[str, Any]] = {},
|
|
) -> List["Response"]:
|
|
gen_kwargs, prompt_length = HuggingfaceEngine._process_args(
|
|
model, tokenizer, processor, template, generating_args, messages, system, tools, image, input_kwargs
|
|
)
|
|
generate_output = model.generate(**gen_kwargs)
|
|
response_ids = generate_output[:, prompt_length:]
|
|
response = tokenizer.batch_decode(response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
|
results = []
|
|
for i in range(len(response)):
|
|
eos_index = (response_ids[i] == tokenizer.eos_token_id).nonzero()
|
|
response_length = (eos_index[0].item() + 1) if len(eos_index) else len(response_ids[i])
|
|
results.append(
|
|
Response(
|
|
response_text=response[i],
|
|
response_length=response_length,
|
|
prompt_length=prompt_length,
|
|
finish_reason="stop" if len(eos_index) else "length",
|
|
)
|
|
)
|
|
|
|
return results
|
|
|
|
@staticmethod
|
|
@torch.inference_mode()
|
|
def _stream_chat(
|
|
model: "PreTrainedModel",
|
|
tokenizer: "PreTrainedTokenizer",
|
|
processor: Optional["ProcessorMixin"],
|
|
template: "Template",
|
|
generating_args: Dict[str, Any],
|
|
messages: Sequence[Dict[str, str]],
|
|
system: Optional[str] = None,
|
|
tools: Optional[str] = None,
|
|
image: Optional["NDArray"] = None,
|
|
input_kwargs: Optional[Dict[str, Any]] = {},
|
|
) -> Callable[[], str]:
|
|
gen_kwargs, _ = HuggingfaceEngine._process_args(
|
|
model, tokenizer, processor, template, generating_args, messages, system, tools, image, input_kwargs
|
|
)
|
|
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
|
gen_kwargs["streamer"] = streamer
|
|
thread = Thread(target=model.generate, kwargs=gen_kwargs, daemon=True)
|
|
thread.start()
|
|
|
|
def stream():
|
|
try:
|
|
return streamer.__next__()
|
|
except StopIteration:
|
|
raise StopAsyncIteration()
|
|
|
|
return stream
|
|
|
|
@staticmethod
|
|
@torch.inference_mode()
|
|
def _get_scores(
|
|
model: "PreTrainedModelWrapper",
|
|
tokenizer: "PreTrainedTokenizer",
|
|
batch_input: List[str],
|
|
input_kwargs: Optional[Dict[str, Any]] = {},
|
|
) -> List[float]:
|
|
max_length = input_kwargs.pop("max_length", None)
|
|
device = getattr(model.pretrained_model, "device", "cuda")
|
|
inputs = tokenizer(
|
|
batch_input,
|
|
padding=True,
|
|
truncation=True,
|
|
max_length=max_length or getattr(model.config, "max_position_embeddings", 1024),
|
|
return_tensors="pt",
|
|
add_special_tokens=True,
|
|
).to(device)
|
|
|
|
input_ids: torch.Tensor = inputs["input_ids"]
|
|
_, _, values = model(**inputs, output_hidden_states=True, return_dict=True)
|
|
|
|
if getattr(model.config, "model_type", None) == "chatglm":
|
|
values = torch.transpose(values, 0, 1)
|
|
|
|
scores = []
|
|
for i in range(input_ids.size(0)):
|
|
end_indexes = (input_ids[i] != tokenizer.pad_token_id).nonzero()
|
|
end_index = end_indexes[-1].item() if len(end_indexes) else 0
|
|
scores.append(values[i, end_index].nan_to_num().item())
|
|
|
|
return scores
|
|
|
|
async def start(self) -> None:
|
|
self._semaphore = asyncio.Semaphore(int(os.environ.get("MAX_CONCURRENT", 1)))
|
|
|
|
async def chat(
|
|
self,
|
|
messages: Sequence[Dict[str, str]],
|
|
system: Optional[str] = None,
|
|
tools: Optional[str] = None,
|
|
image: Optional["NDArray"] = None,
|
|
**input_kwargs,
|
|
) -> List["Response"]:
|
|
if not self.can_generate:
|
|
raise ValueError("The current model does not support `chat`.")
|
|
|
|
loop = asyncio.get_running_loop()
|
|
input_args = (
|
|
self.model,
|
|
self.tokenizer,
|
|
self.processor,
|
|
self.template,
|
|
self.generating_args,
|
|
messages,
|
|
system,
|
|
tools,
|
|
image,
|
|
input_kwargs,
|
|
)
|
|
async with self._semaphore:
|
|
with concurrent.futures.ThreadPoolExecutor() as pool:
|
|
return await loop.run_in_executor(pool, self._chat, *input_args)
|
|
|
|
async def stream_chat(
|
|
self,
|
|
messages: Sequence[Dict[str, str]],
|
|
system: Optional[str] = None,
|
|
tools: Optional[str] = None,
|
|
image: Optional["NDArray"] = None,
|
|
**input_kwargs,
|
|
) -> AsyncGenerator[str, None]:
|
|
if not self.can_generate:
|
|
raise ValueError("The current model does not support `stream_chat`.")
|
|
|
|
loop = asyncio.get_running_loop()
|
|
input_args = (
|
|
self.model,
|
|
self.tokenizer,
|
|
self.processor,
|
|
self.template,
|
|
self.generating_args,
|
|
messages,
|
|
system,
|
|
tools,
|
|
image,
|
|
input_kwargs,
|
|
)
|
|
async with self._semaphore:
|
|
with concurrent.futures.ThreadPoolExecutor() as pool:
|
|
stream = self._stream_chat(*input_args)
|
|
while True:
|
|
try:
|
|
yield await loop.run_in_executor(pool, stream)
|
|
except StopAsyncIteration:
|
|
break
|
|
|
|
async def get_scores(
|
|
self,
|
|
batch_input: List[str],
|
|
**input_kwargs,
|
|
) -> List[float]:
|
|
if self.can_generate:
|
|
raise ValueError("Cannot get scores using an auto-regressive model.")
|
|
|
|
loop = asyncio.get_running_loop()
|
|
input_args = (self.model, self.tokenizer, batch_input, input_kwargs)
|
|
async with self._semaphore:
|
|
with concurrent.futures.ThreadPoolExecutor() as pool:
|
|
return await loop.run_in_executor(pool, self._get_scores, *input_args)
|