mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-10-16 00:28:10 +08:00
130 lines
5.9 KiB
Python
130 lines
5.9 KiB
Python
# Copyright 2025 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from collections import defaultdict
|
|
from typing import TYPE_CHECKING, Any, Optional
|
|
|
|
from ...extras import logging
|
|
from ...extras.constants import IGNORE_INDEX
|
|
from .processor_utils import DatasetProcessor, infer_seqlen
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from ..mm_plugin import AudioInput, ImageInput, VideoInput
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class FeedbackDatasetProcessor(DatasetProcessor):
|
|
def _encode_data_example(
|
|
self,
|
|
prompt: list[dict[str, str]],
|
|
response: list[dict[str, str]],
|
|
kl_response: list[dict[str, str]],
|
|
system: Optional[str],
|
|
tools: Optional[str],
|
|
images: list["ImageInput"],
|
|
videos: list["VideoInput"],
|
|
audios: list["AudioInput"],
|
|
) -> tuple[list[int], list[int], list[int], list[int], bool]:
|
|
if response[0]["content"]: # desired example
|
|
kto_tag = True
|
|
messages = prompt + [response[0]]
|
|
else: # undesired example
|
|
kto_tag = False
|
|
messages = prompt + [response[1]]
|
|
|
|
if kl_response[0]["content"]:
|
|
kl_messages = prompt + [kl_response[0]]
|
|
else:
|
|
kl_messages = prompt + [kl_response[1]]
|
|
|
|
messages = self.template.mm_plugin.process_messages(messages, images, videos, audios, self.processor)
|
|
kl_messages = self.template.mm_plugin.process_messages(kl_messages, images, videos, audios, self.processor)
|
|
prompt_ids, response_ids = self.template.encode_oneturn(self.tokenizer, messages, system, tools)
|
|
kl_prompt_ids, kl_response_ids = self.template.encode_oneturn(self.tokenizer, kl_messages, system, tools)
|
|
|
|
if self.template.efficient_eos:
|
|
response_ids += [self.tokenizer.eos_token_id]
|
|
kl_response_ids += [self.tokenizer.eos_token_id]
|
|
|
|
prompt_ids, _ = self.template.mm_plugin.process_token_ids(
|
|
prompt_ids, None, images, videos, audios, self.tokenizer, self.processor
|
|
)
|
|
kl_prompt_ids, _ = self.template.mm_plugin.process_token_ids(
|
|
kl_prompt_ids, None, images, videos, audios, self.tokenizer, self.processor
|
|
)
|
|
|
|
source_len, target_len = infer_seqlen(len(prompt_ids), len(response_ids), self.data_args.cutoff_len)
|
|
prompt_ids = prompt_ids[:source_len]
|
|
response_ids = response_ids[:target_len]
|
|
kl_source_len, kl_target_len = infer_seqlen(
|
|
len(kl_prompt_ids), len(kl_response_ids), self.data_args.cutoff_len
|
|
)
|
|
kl_prompt_ids = kl_prompt_ids[:kl_source_len]
|
|
kl_response_ids = kl_response_ids[:kl_target_len]
|
|
|
|
input_ids = prompt_ids + response_ids
|
|
labels = [IGNORE_INDEX] * source_len + response_ids
|
|
kl_input_ids = kl_prompt_ids + kl_response_ids
|
|
kl_labels = [IGNORE_INDEX] * kl_source_len + kl_response_ids
|
|
return input_ids, labels, kl_input_ids, kl_labels, kto_tag
|
|
|
|
def preprocess_dataset(self, examples: dict[str, list[Any]]) -> dict[str, list[Any]]:
|
|
# Creates mismatched pairs of prompts and completions for the KL dataset by adding a +1 offset to the order of completions.
|
|
kl_response = [examples["_response"][-1]] + examples["_response"][:-1]
|
|
model_inputs = defaultdict(list)
|
|
for i in range(len(examples["_prompt"])):
|
|
if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) < 2:
|
|
logger.warning_rank0(
|
|
"Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])
|
|
)
|
|
continue
|
|
|
|
input_ids, labels, kl_input_ids, kl_labels, kto_tag = self._encode_data_example(
|
|
prompt=examples["_prompt"][i],
|
|
response=examples["_response"][i],
|
|
kl_response=kl_response[i],
|
|
system=examples["_system"][i],
|
|
tools=examples["_tools"][i],
|
|
images=examples["_images"][i] or [],
|
|
videos=examples["_videos"][i] or [],
|
|
audios=examples["_audios"][i] or [],
|
|
)
|
|
model_inputs["input_ids"].append(input_ids)
|
|
model_inputs["attention_mask"].append([1] * len(input_ids))
|
|
model_inputs["labels"].append(labels)
|
|
model_inputs["kl_input_ids"].append(kl_input_ids)
|
|
model_inputs["kl_attention_mask"].append([1] * len(kl_input_ids))
|
|
model_inputs["kl_labels"].append(kl_labels)
|
|
model_inputs["kto_tags"].append(kto_tag)
|
|
model_inputs["images"].append(examples["_images"][i])
|
|
model_inputs["videos"].append(examples["_videos"][i])
|
|
model_inputs["audios"].append(examples["_audios"][i])
|
|
|
|
desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag])
|
|
undesirable_num = len(model_inputs["kto_tags"]) - desirable_num
|
|
if desirable_num == 0 or undesirable_num == 0:
|
|
logger.warning_rank0("Your dataset only has one preference type.")
|
|
|
|
return model_inputs
|
|
|
|
def print_data_example(self, example: dict[str, list[int]]) -> None:
|
|
valid_labels = list(filter(lambda x: x != IGNORE_INDEX, example["labels"]))
|
|
print("input_ids:\n{}".format(example["input_ids"]))
|
|
print("inputs:\n{}".format(self.tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
|
|
print("label_ids:\n{}".format(example["labels"]))
|
|
print(f"labels:\n{self.tokenizer.decode(valid_labels, skip_special_tokens=False)}")
|