mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-10-15 16:18:10 +08:00
60 lines
2.1 KiB
Python
60 lines
2.1 KiB
Python
from typing import TYPE_CHECKING, Dict
|
|
|
|
import torch
|
|
from transformers.utils import cached_file
|
|
|
|
from ...extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
|
|
from ...extras.logging import get_logger
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import PreTrainedModel
|
|
|
|
from ...hparams import ModelArguments
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") -> Dict[str, torch.Tensor]:
|
|
r"""
|
|
Loads value head parameters from Hugging Face Hub or local disk.
|
|
|
|
Returns: dict with keys `v_head.summary.weight` and `v_head.summary.bias`.
|
|
"""
|
|
kwargs = {"path_or_repo_id": path_or_repo_id, "cache_dir": model_args.cache_dir, "token": model_args.hf_hub_token}
|
|
err_text = ""
|
|
|
|
try:
|
|
from safetensors import safe_open
|
|
|
|
vhead_file = cached_file(filename=V_HEAD_SAFE_WEIGHTS_NAME, **kwargs)
|
|
with safe_open(vhead_file, framework="pt", device="cpu") as f:
|
|
return {key: f.get_tensor(key) for key in f.keys()}
|
|
except Exception as err:
|
|
err_text = str(err)
|
|
|
|
try:
|
|
vhead_file = cached_file(filename=V_HEAD_WEIGHTS_NAME, **kwargs)
|
|
return torch.load(vhead_file, map_location="cpu")
|
|
except Exception as err:
|
|
err_text = str(err)
|
|
|
|
logger.info("Provided path ({}) does not contain value head weights: {}.".format(path_or_repo_id, err_text))
|
|
logger.info("Ignore the above message if you are not resuming the training of a value head model.")
|
|
return None
|
|
|
|
|
|
def prepare_valuehead_model(model: "PreTrainedModel") -> None:
|
|
if getattr(model.config, "model_type", None) == "llava":
|
|
setattr(model, "lm_head", model.language_model.get_output_embeddings())
|
|
setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])
|
|
|
|
if getattr(model.config, "model_type", None) == "chatglm":
|
|
setattr(model, "lm_head", model.transformer.output_layer)
|
|
setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])
|
|
|
|
if getattr(model.config, "model_type", None) == "internlm2":
|
|
setattr(model, "lm_head", model.output)
|
|
setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])
|