mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-01 03:02:51 +08:00
152 lines
5.6 KiB
Python
152 lines
5.6 KiB
Python
# Copyright 2025 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import os
|
|
from collections.abc import Sequence
|
|
from dataclasses import dataclass
|
|
from typing import Any, Literal, Optional
|
|
|
|
from transformers.utils import cached_file
|
|
|
|
from ..extras.constants import DATA_CONFIG
|
|
from ..extras.misc import use_modelscope, use_openmind
|
|
|
|
|
|
@dataclass
|
|
class DatasetAttr:
|
|
r"""Dataset attributes."""
|
|
|
|
# basic configs
|
|
load_from: Literal["hf_hub", "ms_hub", "om_hub", "script", "file"]
|
|
dataset_name: str
|
|
formatting: Literal["alpaca", "sharegpt"] = "alpaca"
|
|
ranking: bool = False
|
|
# extra configs
|
|
subset: Optional[str] = None
|
|
split: str = "train"
|
|
folder: Optional[str] = None
|
|
num_samples: Optional[int] = None
|
|
# common columns
|
|
system: Optional[str] = None
|
|
tools: Optional[str] = None
|
|
images: Optional[str] = None
|
|
videos: Optional[str] = None
|
|
audios: Optional[str] = None
|
|
# dpo columns
|
|
chosen: Optional[str] = None
|
|
rejected: Optional[str] = None
|
|
kto_tag: Optional[str] = None
|
|
# alpaca columns
|
|
prompt: Optional[str] = "instruction"
|
|
query: Optional[str] = "input"
|
|
response: Optional[str] = "output"
|
|
history: Optional[str] = None
|
|
# sharegpt columns
|
|
messages: Optional[str] = "conversations"
|
|
# sharegpt tags
|
|
role_tag: Optional[str] = "from"
|
|
content_tag: Optional[str] = "value"
|
|
user_tag: Optional[str] = "human"
|
|
assistant_tag: Optional[str] = "gpt"
|
|
observation_tag: Optional[str] = "observation"
|
|
function_tag: Optional[str] = "function_call"
|
|
system_tag: Optional[str] = "system"
|
|
|
|
def __repr__(self) -> str:
|
|
return self.dataset_name
|
|
|
|
def set_attr(self, key: str, obj: dict[str, Any], default: Optional[Any] = None) -> None:
|
|
setattr(self, key, obj.get(key, default))
|
|
|
|
def join(self, attr: dict[str, Any]) -> None:
|
|
self.set_attr("formatting", attr, default="alpaca")
|
|
self.set_attr("ranking", attr, default=False)
|
|
self.set_attr("subset", attr)
|
|
self.set_attr("split", attr, default="train")
|
|
self.set_attr("folder", attr)
|
|
self.set_attr("num_samples", attr)
|
|
|
|
if "columns" in attr:
|
|
column_names = ["prompt", "query", "response", "history", "messages", "system", "tools"]
|
|
column_names += ["images", "videos", "audios", "chosen", "rejected", "kto_tag"]
|
|
for column_name in column_names:
|
|
self.set_attr(column_name, attr["columns"])
|
|
|
|
if "tags" in attr:
|
|
tag_names = ["role_tag", "content_tag"]
|
|
tag_names += ["user_tag", "assistant_tag", "observation_tag", "function_tag", "system_tag"]
|
|
for tag in tag_names:
|
|
self.set_attr(tag, attr["tags"])
|
|
|
|
|
|
def get_dataset_list(dataset_names: Optional[Sequence[str]], dataset_dir: str) -> list["DatasetAttr"]:
|
|
r"""Get the attributes of the datasets."""
|
|
if dataset_names is None:
|
|
dataset_names = []
|
|
|
|
if dataset_dir == "ONLINE":
|
|
dataset_info = None
|
|
else:
|
|
if dataset_dir.startswith("REMOTE:"):
|
|
config_path = cached_file(path_or_repo_id=dataset_dir[7:], filename=DATA_CONFIG, repo_type="dataset")
|
|
else:
|
|
config_path = os.path.join(dataset_dir, DATA_CONFIG)
|
|
|
|
try:
|
|
with open(config_path) as f:
|
|
dataset_info = json.load(f)
|
|
except Exception as err:
|
|
if len(dataset_names) != 0:
|
|
raise ValueError(f"Cannot open {config_path} due to {str(err)}.")
|
|
|
|
dataset_info = None
|
|
|
|
dataset_list: list[DatasetAttr] = []
|
|
for name in dataset_names:
|
|
if dataset_info is None: # dataset_dir is ONLINE
|
|
if use_modelscope():
|
|
load_from = "ms_hub"
|
|
elif use_openmind():
|
|
load_from = "om_hub"
|
|
else:
|
|
load_from = "hf_hub"
|
|
dataset_attr = DatasetAttr(load_from, dataset_name=name)
|
|
dataset_list.append(dataset_attr)
|
|
continue
|
|
|
|
if name not in dataset_info:
|
|
raise ValueError(f"Undefined dataset {name} in {DATA_CONFIG}.")
|
|
|
|
has_hf_url = "hf_hub_url" in dataset_info[name]
|
|
has_ms_url = "ms_hub_url" in dataset_info[name]
|
|
has_om_url = "om_hub_url" in dataset_info[name]
|
|
|
|
if has_hf_url or has_ms_url or has_om_url:
|
|
if has_ms_url and (use_modelscope() or not has_hf_url):
|
|
dataset_attr = DatasetAttr("ms_hub", dataset_name=dataset_info[name]["ms_hub_url"])
|
|
elif has_om_url and (use_openmind() or not has_hf_url):
|
|
dataset_attr = DatasetAttr("om_hub", dataset_name=dataset_info[name]["om_hub_url"])
|
|
else:
|
|
dataset_attr = DatasetAttr("hf_hub", dataset_name=dataset_info[name]["hf_hub_url"])
|
|
elif "script_url" in dataset_info[name]:
|
|
dataset_attr = DatasetAttr("script", dataset_name=dataset_info[name]["script_url"])
|
|
else:
|
|
dataset_attr = DatasetAttr("file", dataset_name=dataset_info[name]["file_name"])
|
|
|
|
dataset_attr.join(dataset_info[name])
|
|
dataset_list.append(dataset_attr)
|
|
|
|
return dataset_list
|