mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-01 03:02:51 +08:00
113 lines
4.6 KiB
Python
113 lines
4.6 KiB
Python
# Copyright 2025 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import os
|
|
from collections import OrderedDict
|
|
from typing import Any
|
|
|
|
import fire
|
|
import torch
|
|
from huggingface_hub import split_torch_state_dict_into_shards
|
|
from safetensors.torch import save_file
|
|
from tqdm import tqdm
|
|
from transformers.modeling_utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME
|
|
|
|
|
|
CONFIG_NAME = "config.json"
|
|
|
|
|
|
def save_weight(input_dir: str, output_dir: str, shard_size: str, save_safetensors: bool):
|
|
baichuan2_state_dict: dict[str, torch.Tensor] = OrderedDict()
|
|
for filepath in tqdm(os.listdir(input_dir), desc="Load weights"):
|
|
if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".bin"):
|
|
shard_weight = torch.load(os.path.join(input_dir, filepath), map_location="cpu")
|
|
baichuan2_state_dict.update(shard_weight)
|
|
|
|
llama_state_dict: dict[str, torch.Tensor] = OrderedDict()
|
|
for key, value in tqdm(baichuan2_state_dict.items(), desc="Convert format"):
|
|
if "W_pack" in key:
|
|
proj_size = value.size(0) // 3
|
|
llama_state_dict[key.replace("W_pack", "q_proj")] = value[:proj_size, :]
|
|
llama_state_dict[key.replace("W_pack", "k_proj")] = value[proj_size : 2 * proj_size, :]
|
|
llama_state_dict[key.replace("W_pack", "v_proj")] = value[2 * proj_size :, :]
|
|
elif "lm_head" in key:
|
|
llama_state_dict[key] = torch.nn.functional.normalize(value)
|
|
else:
|
|
llama_state_dict[key] = value
|
|
|
|
weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME
|
|
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
|
state_dict_split = split_torch_state_dict_into_shards(
|
|
llama_state_dict, filename_pattern=filename_pattern, max_shard_size=shard_size
|
|
)
|
|
for shard_file, tensors in tqdm(state_dict_split.filename_to_tensors.items(), desc="Save weights"):
|
|
shard = {tensor: llama_state_dict[tensor].contiguous() for tensor in tensors}
|
|
if save_safetensors:
|
|
save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"})
|
|
else:
|
|
torch.save(shard, os.path.join(output_dir, shard_file))
|
|
|
|
if not state_dict_split.is_sharded:
|
|
print(f"Model weights saved in {os.path.join(output_dir, weights_name)}.")
|
|
else:
|
|
index = {
|
|
"metadata": state_dict_split.metadata,
|
|
"weight_map": state_dict_split.tensor_to_filename,
|
|
}
|
|
index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME
|
|
with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f:
|
|
json.dump(index, f, indent=2, sort_keys=True)
|
|
|
|
print(f"Model weights saved in {output_dir}.")
|
|
|
|
|
|
def save_config(input_dir: str, output_dir: str):
|
|
with open(os.path.join(input_dir, CONFIG_NAME), encoding="utf-8") as f:
|
|
llama2_config_dict: dict[str, Any] = json.load(f)
|
|
|
|
llama2_config_dict["architectures"] = ["LlamaForCausalLM"]
|
|
llama2_config_dict.pop("auto_map", None)
|
|
llama2_config_dict.pop("tokenizer_class", None)
|
|
llama2_config_dict["model_type"] = "llama"
|
|
|
|
with open(os.path.join(output_dir, CONFIG_NAME), "w", encoding="utf-8") as f:
|
|
json.dump(llama2_config_dict, f, indent=2)
|
|
|
|
print(f"Model config saved in {os.path.join(output_dir, CONFIG_NAME)}")
|
|
|
|
|
|
def llamafy_baichuan2(
|
|
input_dir: str,
|
|
output_dir: str,
|
|
shard_size: str = "2GB",
|
|
save_safetensors: bool = True,
|
|
):
|
|
r"""Convert the Baichuan2-7B model in the same format as LLaMA2-7B.
|
|
|
|
Usage: python llamafy_baichuan2.py --input_dir input --output_dir output
|
|
Converted model: https://huggingface.co/hiyouga/Baichuan2-7B-Base-LLaMAfied
|
|
"""
|
|
try:
|
|
os.makedirs(output_dir, exist_ok=False)
|
|
except Exception as e:
|
|
raise print("Output dir already exists", e)
|
|
|
|
save_weight(input_dir, output_dir, shard_size, save_safetensors)
|
|
save_config(input_dir, output_dir)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire(llamafy_baichuan2)
|