mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-04 20:52:59 +08:00
231 lines
8.1 KiB
Python
231 lines
8.1 KiB
Python
# Copyright 2024 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import re
|
|
from abc import ABC, abstractmethod
|
|
from dataclasses import dataclass, field
|
|
from typing import Any, Dict, List, Literal, Optional, Sequence, Set, Tuple, Union
|
|
|
|
|
|
SLOTS = Sequence[Union[str, Set[str], Dict[str, str]]]
|
|
|
|
|
|
DEFAULT_TOOL_PROMPT = (
|
|
"You have access to the following tools:\n{tool_text}"
|
|
"Use the following format if using a tool:\n"
|
|
"```\n"
|
|
"Action: tool name (one of [{tool_names}]).\n"
|
|
"Action Input: the input to the tool, in a JSON format representing the kwargs "
|
|
"""(e.g. ```{{"input": "hello world", "num_beams": 5}}```).\n"""
|
|
"```\n"
|
|
)
|
|
|
|
|
|
GLM4_TOOL_PROMPT = (
|
|
"你是一个名为 GLM-4 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,"
|
|
"你的任务是针对用户的问题和要求提供适当的答复和支持。{tool_text}"
|
|
)
|
|
|
|
|
|
def default_tool_formatter(tools: List[Dict[str, Any]]) -> str:
|
|
tool_text = ""
|
|
tool_names = []
|
|
for tool in tools:
|
|
param_text = ""
|
|
for name, param in tool["parameters"]["properties"].items():
|
|
required = ", required" if name in tool["parameters"].get("required", []) else ""
|
|
enum = ", should be one of [{}]".format(", ".join(param["enum"])) if param.get("enum", None) else ""
|
|
items = (
|
|
", where each item should be {}".format(param["items"].get("type", "")) if param.get("items") else ""
|
|
)
|
|
param_text += " - {name} ({type}{required}): {desc}{enum}{items}\n".format(
|
|
name=name,
|
|
type=param.get("type", ""),
|
|
required=required,
|
|
desc=param.get("description", ""),
|
|
enum=enum,
|
|
items=items,
|
|
)
|
|
|
|
tool_text += "> Tool Name: {name}\nTool Description: {desc}\nTool Args:\n{args}\n".format(
|
|
name=tool["name"], desc=tool.get("description", ""), args=param_text
|
|
)
|
|
tool_names.append(tool["name"])
|
|
|
|
return DEFAULT_TOOL_PROMPT.format(tool_text=tool_text, tool_names=", ".join(tool_names))
|
|
|
|
|
|
def default_tool_extractor(content: str) -> Union[str, List[Tuple[str, str]]]:
|
|
regex = re.compile(r"Action:\s*([a-zA-Z0-9_]+)\s*Action Input:\s*(.+?)(?=\s*Action:|\s*$)", re.DOTALL)
|
|
action_match: List[Tuple[str, str]] = re.findall(regex, content)
|
|
if not action_match:
|
|
return content
|
|
|
|
results = []
|
|
for match in action_match:
|
|
tool_name = match[0].strip()
|
|
tool_input = match[1].strip().strip('"').strip("```")
|
|
try:
|
|
arguments = json.loads(tool_input)
|
|
results.append((tool_name, json.dumps(arguments, ensure_ascii=False)))
|
|
except json.JSONDecodeError:
|
|
return content
|
|
|
|
return results
|
|
|
|
|
|
def glm4_tool_formatter(tools: List[Dict[str, Any]]) -> str:
|
|
tool_text = ""
|
|
for tool in tools:
|
|
tool_text += "\n\n## {name}\n\n{body}\n在调用上述函数时,请使用 Json 格式表示调用的参数。".format(
|
|
name=tool["name"], body=json.dumps(tool, indent=4, ensure_ascii=False)
|
|
)
|
|
|
|
return GLM4_TOOL_PROMPT.format(tool_text=tool_text)
|
|
|
|
|
|
def glm4_tool_extractor(content: str) -> Union[str, List[Tuple[str, str]]]:
|
|
if "\n" not in content:
|
|
return content
|
|
|
|
tool_name, tool_input = content.split("\n", maxsplit=1)
|
|
try:
|
|
arguments = json.loads(tool_input)
|
|
except json.JSONDecodeError:
|
|
return content
|
|
|
|
return [(tool_name, json.dumps(arguments, ensure_ascii=False))]
|
|
|
|
|
|
@dataclass
|
|
class Formatter(ABC):
|
|
slots: SLOTS = field(default_factory=list)
|
|
tool_format: Optional[Literal["default", "glm4"]] = None
|
|
|
|
@abstractmethod
|
|
def apply(self, **kwargs) -> SLOTS: ...
|
|
|
|
def extract(self, content: str) -> Union[str, List[Tuple[str, str]]]:
|
|
raise NotImplementedError
|
|
|
|
|
|
@dataclass
|
|
class EmptyFormatter(Formatter):
|
|
def __post_init__(self):
|
|
has_placeholder = False
|
|
for slot in filter(lambda s: isinstance(s, str), self.slots):
|
|
if re.search(r"\{\{[a-zA-Z_][a-zA-Z0-9_]*\}\}", slot):
|
|
has_placeholder = True
|
|
|
|
if has_placeholder:
|
|
raise ValueError("Empty formatter should not contain any placeholder.")
|
|
|
|
def apply(self, **kwargs) -> SLOTS:
|
|
return self.slots
|
|
|
|
|
|
@dataclass
|
|
class StringFormatter(Formatter):
|
|
def __post_init__(self):
|
|
has_placeholder = False
|
|
for slot in filter(lambda s: isinstance(s, str), self.slots):
|
|
if re.search(r"\{\{[a-zA-Z_][a-zA-Z0-9_]*\}\}", slot):
|
|
has_placeholder = True
|
|
|
|
if not has_placeholder:
|
|
raise ValueError("A placeholder is required in the string formatter.")
|
|
|
|
def apply(self, **kwargs) -> SLOTS:
|
|
elements = []
|
|
for slot in self.slots:
|
|
if isinstance(slot, str):
|
|
for name, value in kwargs.items():
|
|
if not isinstance(value, str):
|
|
raise RuntimeError("Expected a string, got {}".format(value))
|
|
|
|
slot = slot.replace("{{" + name + "}}", value, 1)
|
|
elements.append(slot)
|
|
elif isinstance(slot, (dict, set)):
|
|
elements.append(slot)
|
|
else:
|
|
raise RuntimeError("Input must be string, set[str] or dict[str, str], got {}".format(type(slot)))
|
|
|
|
return elements
|
|
|
|
|
|
@dataclass
|
|
class FunctionFormatter(Formatter):
|
|
def __post_init__(self):
|
|
has_name, has_args = False, False
|
|
for slot in filter(lambda s: isinstance(s, str), self.slots):
|
|
if "{{name}}" in slot:
|
|
has_name = True
|
|
if "{{arguments}}" in slot:
|
|
has_args = True
|
|
|
|
if not has_name or not has_args:
|
|
raise ValueError("Name and arguments placeholders are required in the function formatter.")
|
|
|
|
def apply(self, **kwargs) -> SLOTS:
|
|
content = kwargs.pop("content")
|
|
functions: List[Tuple[str, str]] = []
|
|
try:
|
|
tool_calls = json.loads(content)
|
|
if not isinstance(tool_calls, list): # parallel function call
|
|
tool_calls = [tool_calls]
|
|
|
|
for tool_call in tool_calls:
|
|
functions.append((tool_call["name"], json.dumps(tool_call["arguments"], ensure_ascii=False)))
|
|
|
|
except json.JSONDecodeError:
|
|
functions = []
|
|
|
|
elements = []
|
|
for name, arguments in functions:
|
|
for slot in self.slots:
|
|
if isinstance(slot, str):
|
|
slot = slot.replace("{{name}}", name).replace("{{arguments}}", arguments)
|
|
elements.append(slot)
|
|
elif isinstance(slot, (dict, set)):
|
|
elements.append(slot)
|
|
else:
|
|
raise RuntimeError("Input must be string, set[str] or dict[str, str], got {}".format(type(slot)))
|
|
|
|
return elements
|
|
|
|
|
|
@dataclass
|
|
class ToolFormatter(Formatter):
|
|
def __post_init__(self):
|
|
if self.tool_format == "default":
|
|
self._tool_formatter = default_tool_formatter
|
|
self._tool_extractor = default_tool_extractor
|
|
elif self.tool_format == "glm4":
|
|
self._tool_formatter = glm4_tool_formatter
|
|
self._tool_extractor = glm4_tool_extractor
|
|
else:
|
|
raise ValueError("Tool format was not found.")
|
|
|
|
def apply(self, **kwargs) -> SLOTS:
|
|
content = kwargs.pop("content")
|
|
try:
|
|
tools = json.loads(content)
|
|
return [self._tool_formatter(tools) if len(tools) != 0 else ""]
|
|
except json.JSONDecodeError:
|
|
return [""]
|
|
|
|
def extract(self, content: str) -> Union[str, List[Tuple[str, str]]]:
|
|
return self._tool_extractor(content)
|