LLaMA-Factory/src/web_demo.py
hiyouga a69b1b1c3a modity code structure
Former-commit-id: 0682ed357210897e0b67c4a6eb31a94b3eb929f1
2023-07-15 16:54:28 +08:00

96 lines
3.3 KiB
Python

# coding=utf-8
# Implements user interface in browser for fine-tuned models.
# Usage: python web_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
import gradio as gr
from threading import Thread
from transformers import TextIteratorStreamer
from transformers.utils.versions import require_version
from llmtuner import Template, get_infer_args, load_model_and_tokenizer, get_logits_processor
require_version("gradio>=3.30.0", "To fix: pip install gradio>=3.30.0")
model_args, data_args, finetuning_args, generating_args = get_infer_args()
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
prompt_template = Template(data_args.prompt_template)
source_prefix = data_args.source_prefix if data_args.source_prefix else ""
def predict(query, chatbot, max_new_tokens, top_p, temperature, history):
chatbot.append((query, ""))
input_ids = tokenizer([prompt_template.get_prompt(query, history, source_prefix)], return_tensors="pt")["input_ids"]
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = generating_args.to_dict()
gen_kwargs.update({
"input_ids": input_ids,
"top_p": top_p,
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"logits_processor": get_logits_processor(),
"streamer": streamer
})
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
response = ""
for new_text in streamer:
response += new_text
new_history = history + [(query, response)]
chatbot[-1] = (query, response)
yield chatbot, new_history
def reset_user_input():
return gr.update(value="")
def reset_state():
return [], []
with gr.Blocks() as demo:
gr.HTML("""
<h1 align="center">
<a href="https://github.com/hiyouga/LLaMA-Efficient-Tuning" target="_blank">
LLaMA Efficient Tuning
</a>
</h1>
""")
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_new_tokens = gr.Slider(10, 2048, value=generating_args.max_new_tokens, step=1.0,
label="Maximum new tokens", interactive=True)
top_p = gr.Slider(0.01, 1, value=generating_args.top_p, step=0.01,
label="Top P", interactive=True)
temperature = gr.Slider(0.01, 1.5, value=generating_args.temperature, step=0.01,
label="Temperature", interactive=True)
history = gr.State([])
submitBtn.click(predict, [user_input, chatbot, max_new_tokens, top_p, temperature, history], [chatbot, history], show_progress=True)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
demo.queue().launch(server_name="0.0.0.0", share=True, inbrowser=True)