mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-11-05 18:32:14 +08:00
42 lines
1.5 KiB
Python
42 lines
1.5 KiB
Python
# Copyright 2024 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from dataclasses import dataclass
|
|
from typing import TYPE_CHECKING, Dict, Optional
|
|
|
|
import numpy as np
|
|
|
|
from ...extras.misc import numpify
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import EvalPrediction
|
|
|
|
|
|
@dataclass
|
|
class ComputeAccuracy:
|
|
def __post_init__(self):
|
|
self.score_dict = {"accuracy": []}
|
|
|
|
def __call__(self, eval_preds: "EvalPrediction", compute_result: bool = True) -> Optional[Dict[str, float]]:
|
|
chosen_scores, rejected_scores = numpify(eval_preds.predictions[0]), numpify(eval_preds.predictions[1])
|
|
if not chosen_scores.shape:
|
|
self.score_dict["accuracy"].append(chosen_scores > rejected_scores)
|
|
else:
|
|
for i in range(len(chosen_scores)):
|
|
self.score_dict["accuracy"].append(chosen_scores[i] > rejected_scores[i])
|
|
|
|
if compute_result:
|
|
return {"accuracy": float(np.mean(self.score_dict["accuracy"]))}
|