mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-05 05:02:50 +08:00
63 lines
2.0 KiB
Python
63 lines
2.0 KiB
Python
# Copyright 2024 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
from dataclasses import dataclass, field
|
|
from typing import Literal, Optional
|
|
|
|
from datasets import DownloadMode
|
|
|
|
|
|
@dataclass
|
|
class EvaluationArguments:
|
|
r"""
|
|
Arguments pertaining to specify the evaluation parameters.
|
|
"""
|
|
|
|
task: str = field(
|
|
metadata={"help": "Name of the evaluation task."},
|
|
)
|
|
task_dir: str = field(
|
|
default="evaluation",
|
|
metadata={"help": "Path to the folder containing the evaluation datasets."},
|
|
)
|
|
batch_size: int = field(
|
|
default=4,
|
|
metadata={"help": "The batch size per GPU for evaluation."},
|
|
)
|
|
seed: int = field(
|
|
default=42,
|
|
metadata={"help": "Random seed to be used with data loaders."},
|
|
)
|
|
lang: Literal["en", "zh"] = field(
|
|
default="en",
|
|
metadata={"help": "Language used at evaluation."},
|
|
)
|
|
n_shot: int = field(
|
|
default=5,
|
|
metadata={"help": "Number of examplars for few-shot learning."},
|
|
)
|
|
save_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Path to save the evaluation results."},
|
|
)
|
|
download_mode: DownloadMode = field(
|
|
default=DownloadMode.REUSE_DATASET_IF_EXISTS,
|
|
metadata={"help": "Download mode used for the evaluation datasets."},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
if self.save_dir is not None and os.path.exists(self.save_dir):
|
|
raise ValueError("`save_dir` already exists, use another one.")
|