hiyouga 6faf9c35a9 support unsloth
Former-commit-id: b857f00234b90b785d82ca7cdb29af3d948b1a7b
2023-12-23 00:14:33 +08:00

62 lines
2.5 KiB
Python

from typing import TYPE_CHECKING, Any, Dict, List, Optional
from llmtuner.extras.callbacks import LogCallback
from llmtuner.extras.logging import get_logger
from llmtuner.model import get_train_args, get_infer_args, load_model_and_tokenizer
from llmtuner.train.pt import run_pt
from llmtuner.train.sft import run_sft
from llmtuner.train.rm import run_rm
from llmtuner.train.ppo import run_ppo
from llmtuner.train.dpo import run_dpo
if TYPE_CHECKING:
from transformers import TrainerCallback
logger = get_logger(__name__)
def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["TrainerCallback"]] = None):
model_args, data_args, training_args, finetuning_args, generating_args = get_train_args(args)
callbacks = [LogCallback()] if callbacks is None else callbacks
if finetuning_args.stage == "pt":
run_pt(model_args, data_args, training_args, finetuning_args, callbacks)
elif finetuning_args.stage == "sft":
run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
elif finetuning_args.stage == "rm":
run_rm(model_args, data_args, training_args, finetuning_args, callbacks)
elif finetuning_args.stage == "ppo":
run_ppo(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
elif finetuning_args.stage == "dpo":
run_dpo(model_args, data_args, training_args, finetuning_args, callbacks)
else:
raise ValueError("Unknown task.")
def export_model(args: Optional[Dict[str, Any]] = None):
model_args, _, finetuning_args, _ = get_infer_args(args)
if model_args.adapter_name_or_path is not None and model_args.export_quantization_bit is not None:
raise ValueError("Please merge adapters before quantizing the model.")
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
if getattr(model, "quantization_method", None) and model_args.adapter_name_or_path is not None:
logger.warning("Cannot merge adapters to a quantized model.")
model.config.use_cache = True
model = model.to("cpu")
model.save_pretrained(model_args.export_dir, max_shard_size="{}GB".format(model_args.export_size))
try:
tokenizer.padding_side = "left" # restore padding side
tokenizer.init_kwargs["padding_side"] = "left"
tokenizer.save_pretrained(model_args.export_dir)
except:
logger.warning("Cannot save tokenizer, please copy the files manually.")
if __name__ == "__main__":
run_exp()