mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-04 12:42:51 +08:00
185 lines
7.5 KiB
Python
185 lines
7.5 KiB
Python
import json
|
|
from typing import Literal, Optional
|
|
from dataclasses import asdict, dataclass, field
|
|
|
|
|
|
@dataclass
|
|
class FreezeArguments:
|
|
r"""
|
|
Arguments pertaining to the freeze (partial-parameter) training.
|
|
"""
|
|
num_layer_trainable: Optional[int] = field(
|
|
default=3,
|
|
metadata={"help": "Number of trainable layers for partial-parameter (freeze) fine-tuning."}
|
|
)
|
|
name_module_trainable: Optional[str] = field(
|
|
default="mlp",
|
|
metadata={"help": "Name of trainable modules for partial-parameter (freeze) fine-tuning. \
|
|
Use commas to separate multiple modules. \
|
|
LLaMA choices: [\"mlp\", \"self_attn\"], \
|
|
BLOOM & Falcon & ChatGLM choices: [\"mlp\", \"self_attention\"], \
|
|
Qwen choices: [\"mlp\", \"attn\"], \
|
|
Phi-1.5 choices: [\"mlp\", \"mixer\"], \
|
|
Others choices: the same as LLaMA."}
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class LoraArguments:
|
|
r"""
|
|
Arguments pertaining to the LoRA training.
|
|
"""
|
|
lora_rank: Optional[int] = field(
|
|
default=8,
|
|
metadata={"help": "The intrinsic dimension for LoRA fine-tuning."}
|
|
)
|
|
lora_alpha: Optional[float] = field(
|
|
default=None,
|
|
metadata={"help": "The scale factor for LoRA fine-tuning (default: lora_rank * 2.0)."}
|
|
)
|
|
lora_dropout: Optional[float] = field(
|
|
default=0.1,
|
|
metadata={"help": "Dropout rate for the LoRA fine-tuning."}
|
|
)
|
|
lora_target: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Name(s) of target modules to apply LoRA. Use commas to separate multiple modules. \
|
|
LLaMA choices: [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \
|
|
BLOOM & Falcon & ChatGLM choices: [\"query_key_value\", \"dense\", \"dense_h_to_4h\", \"dense_4h_to_h\"], \
|
|
Baichuan choices: [\"W_pack\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \
|
|
Qwen choices: [\"c_attn\", \"attn.c_proj\", \"w1\", \"w2\", \"mlp.c_proj\"], \
|
|
Phi-1.5 choices: [\"Wqkv\", \"out_proj\", \"fc1\", \"fc2\"], \
|
|
Others choices: the same as LLaMA."}
|
|
)
|
|
additional_target: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Name(s) of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint."}
|
|
)
|
|
resume_lora_training: Optional[bool] = field(
|
|
default=True,
|
|
metadata={"help": "Whether to resume training from the last LoRA weights or create new weights after merging them."}
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class RLHFArguments:
|
|
r"""
|
|
Arguments pertaining to the PPO and DPO training.
|
|
"""
|
|
dpo_beta: Optional[float] = field(
|
|
default=0.1,
|
|
metadata={"help": "The beta parameter for the DPO loss."}
|
|
)
|
|
ppo_logger: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Log with either 'wandb' or 'tensorboard' in PPO training."}
|
|
)
|
|
ppo_score_norm: Optional[bool] = field(
|
|
default=False,
|
|
metadata={"help": "Use score normalization in PPO training."}
|
|
)
|
|
ppo_target: Optional[float] = field(
|
|
default=6.0,
|
|
metadata={"help": "Target KL value for adaptive KL control in PPO training."}
|
|
)
|
|
ppo_whiten_rewards: Optional[bool] = field(
|
|
default=False,
|
|
metadata={"help": "Whiten the rewards before compute advantages in PPO training."}
|
|
)
|
|
ref_model: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Path to the reference model used for the PPO or DPO training."}
|
|
)
|
|
ref_model_checkpoint: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Path to the directory(s) containing the model checkpoints of the reference model."}
|
|
)
|
|
ref_model_quantization_bit: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of bits to quantize the reference model."}
|
|
)
|
|
reward_model: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Path to the directory containing the checkpoints of the reward model."}
|
|
)
|
|
reward_model_checkpoint: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Path to the directory(s) containing the model checkpoints of the reward model."}
|
|
)
|
|
reward_model_quantization_bit: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of bits to quantize the reward model."}
|
|
)
|
|
reward_model_type: Optional[Literal["lora", "full"]] = field(
|
|
default="lora",
|
|
metadata={"help": "The checkpoint type of the reward model. The lora type only supports lora training."}
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments):
|
|
r"""
|
|
Arguments pertaining to which techniques we are going to fine-tuning with.
|
|
"""
|
|
stage: Optional[Literal["pt", "sft", "rm", "ppo", "dpo"]] = field(
|
|
default="sft",
|
|
metadata={"help": "Which stage will be performed in training."}
|
|
)
|
|
finetuning_type: Optional[Literal["lora", "freeze", "full"]] = field(
|
|
default="lora",
|
|
metadata={"help": "Which fine-tuning method to use."}
|
|
)
|
|
upcast_layernorm: Optional[bool] = field(
|
|
default=False,
|
|
metadata={"help": "Whether to upcast the layernorm weights in fp32."}
|
|
)
|
|
neft_alpha: Optional[float] = field(
|
|
default=0,
|
|
metadata={"help": "The alpha parameter to control the noise magnitude in NEFTune."}
|
|
)
|
|
export_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Path to the directory to save the exported model."}
|
|
)
|
|
plot_loss: Optional[bool] = field(
|
|
default=False,
|
|
metadata={"help": "Whether to plot the training loss after fine-tuning or not."}
|
|
)
|
|
|
|
def __post_init__(self):
|
|
def split_arg(arg):
|
|
if isinstance(arg, str):
|
|
return [item.strip() for item in arg.split(",")]
|
|
return arg
|
|
|
|
self.name_module_trainable = split_arg(self.name_module_trainable)
|
|
self.lora_alpha = self.lora_alpha or float(self.lora_rank * 2.0)
|
|
self.lora_target = split_arg(self.lora_target)
|
|
self.additional_target = split_arg(self.additional_target)
|
|
self.ref_model_checkpoint = split_arg(self.ref_model_checkpoint)
|
|
self.reward_model_checkpoint = split_arg(self.reward_model_checkpoint)
|
|
|
|
assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method."
|
|
assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
|
|
assert self.reward_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
|
|
|
|
if self.stage == "ppo" and self.reward_model is None:
|
|
raise ValueError("Reward model is necessary for PPO training.")
|
|
|
|
if self.stage == "ppo" and self.reward_model_type == "lora" and self.finetuning_type != "lora":
|
|
raise ValueError("Lora reward model only supports lora training.")
|
|
|
|
def save_to_json(self, json_path: str):
|
|
r"""Saves the content of this instance in JSON format inside `json_path`."""
|
|
json_string = json.dumps(asdict(self), indent=2, sort_keys=True) + "\n"
|
|
with open(json_path, "w", encoding="utf-8") as f:
|
|
f.write(json_string)
|
|
|
|
@classmethod
|
|
def load_from_json(cls, json_path: str):
|
|
r"""Creates an instance from the content of `json_path`."""
|
|
with open(json_path, "r", encoding="utf-8") as f:
|
|
text = f.read()
|
|
|
|
return cls(**json.loads(text))
|