mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-04 12:42:51 +08:00
149 lines
5.9 KiB
Python
149 lines
5.9 KiB
Python
import os
|
|
import json
|
|
import time
|
|
from typing import TYPE_CHECKING
|
|
from datetime import timedelta
|
|
from transformers import TrainerCallback
|
|
from transformers.trainer_utils import has_length, PREFIX_CHECKPOINT_DIR
|
|
|
|
from llmtuner.extras.constants import LOG_FILE_NAME
|
|
from llmtuner.extras.logging import get_logger
|
|
from llmtuner.extras.misc import fix_valuehead_checkpoint
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import TrainingArguments, TrainerState, TrainerControl
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
class FixValueHeadModelCallback(TrainerCallback):
|
|
|
|
def on_save(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
|
r"""
|
|
Event called after a checkpoint save.
|
|
"""
|
|
if args.should_save:
|
|
fix_valuehead_checkpoint(
|
|
model=kwargs.pop("model"),
|
|
output_dir=os.path.join(args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, state.global_step)),
|
|
safe_serialization=args.save_safetensors
|
|
)
|
|
|
|
|
|
class LogCallback(TrainerCallback):
|
|
|
|
def __init__(self, runner=None):
|
|
self.runner = runner
|
|
self.in_training = False
|
|
self.start_time = time.time()
|
|
self.cur_steps = 0
|
|
self.max_steps = 0
|
|
self.elapsed_time = ""
|
|
self.remaining_time = ""
|
|
|
|
def timing(self):
|
|
cur_time = time.time()
|
|
elapsed_time = cur_time - self.start_time
|
|
avg_time_per_step = elapsed_time / self.cur_steps if self.cur_steps != 0 else 0
|
|
remaining_time = (self.max_steps - self.cur_steps) * avg_time_per_step
|
|
self.elapsed_time = str(timedelta(seconds=int(elapsed_time)))
|
|
self.remaining_time = str(timedelta(seconds=int(remaining_time)))
|
|
|
|
def on_train_begin(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
|
r"""
|
|
Event called at the beginning of training.
|
|
"""
|
|
if state.is_local_process_zero:
|
|
self.in_training = True
|
|
self.start_time = time.time()
|
|
self.max_steps = state.max_steps
|
|
if os.path.exists(os.path.join(args.output_dir, LOG_FILE_NAME)) and args.overwrite_output_dir:
|
|
logger.warning("Previous log file in this folder will be deleted.")
|
|
os.remove(os.path.join(args.output_dir, LOG_FILE_NAME))
|
|
|
|
def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
|
r"""
|
|
Event called at the end of training.
|
|
"""
|
|
if state.is_local_process_zero:
|
|
self.in_training = False
|
|
self.cur_steps = 0
|
|
self.max_steps = 0
|
|
|
|
def on_substep_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
|
r"""
|
|
Event called at the end of an substep during gradient accumulation.
|
|
"""
|
|
if state.is_local_process_zero and self.runner is not None and self.runner.aborted:
|
|
control.should_epoch_stop = True
|
|
control.should_training_stop = True
|
|
|
|
def on_step_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
|
r"""
|
|
Event called at the end of a training step.
|
|
"""
|
|
if state.is_local_process_zero:
|
|
self.cur_steps = state.global_step
|
|
self.timing()
|
|
if self.runner is not None and self.runner.aborted:
|
|
control.should_epoch_stop = True
|
|
control.should_training_stop = True
|
|
|
|
def on_evaluate(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
|
r"""
|
|
Event called after an evaluation phase.
|
|
"""
|
|
if state.is_local_process_zero and not self.in_training:
|
|
self.cur_steps = 0
|
|
self.max_steps = 0
|
|
|
|
def on_predict(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", *other, **kwargs):
|
|
r"""
|
|
Event called after a successful prediction.
|
|
"""
|
|
if state.is_local_process_zero and not self.in_training:
|
|
self.cur_steps = 0
|
|
self.max_steps = 0
|
|
|
|
def on_log(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs) -> None:
|
|
r"""
|
|
Event called after logging the last logs.
|
|
"""
|
|
if not state.is_local_process_zero:
|
|
return
|
|
|
|
logs = dict(
|
|
current_steps=self.cur_steps,
|
|
total_steps=self.max_steps,
|
|
loss=state.log_history[-1].get("loss", None),
|
|
eval_loss=state.log_history[-1].get("eval_loss", None),
|
|
predict_loss=state.log_history[-1].get("predict_loss", None),
|
|
reward=state.log_history[-1].get("reward", None),
|
|
learning_rate=state.log_history[-1].get("learning_rate", None),
|
|
epoch=state.log_history[-1].get("epoch", None),
|
|
percentage=round(self.cur_steps / self.max_steps * 100, 2) if self.max_steps != 0 else 100,
|
|
elapsed_time=self.elapsed_time,
|
|
remaining_time=self.remaining_time
|
|
)
|
|
if self.runner is not None:
|
|
logger.info("{{'loss': {:.4f}, 'learning_rate': {:2.4e}, 'epoch': {:.2f}}}".format(
|
|
logs["loss"] or 0, logs["learning_rate"] or 0, logs["epoch"] or 0
|
|
))
|
|
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
with open(os.path.join(args.output_dir, "trainer_log.jsonl"), "a", encoding="utf-8") as f:
|
|
f.write(json.dumps(logs) + "\n")
|
|
|
|
def on_prediction_step(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
|
r"""
|
|
Event called after a prediction step.
|
|
"""
|
|
eval_dataloader = kwargs.pop("eval_dataloader", None)
|
|
if state.is_local_process_zero and has_length(eval_dataloader) and not self.in_training:
|
|
if self.max_steps == 0:
|
|
self.max_steps = len(eval_dataloader)
|
|
self.cur_steps += 1
|
|
self.timing()
|