mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-03 20:22:49 +08:00
119 lines
5.7 KiB
Python
119 lines
5.7 KiB
Python
# Inspired by: https://github.com/hendrycks/test/blob/master/evaluate_flan.py
|
|
|
|
import os
|
|
import json
|
|
import torch
|
|
import tiktoken
|
|
import numpy as np
|
|
from tqdm import tqdm, trange
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from datasets import load_dataset
|
|
from transformers.utils import cached_file
|
|
|
|
from llmtuner.data.template import get_template_and_fix_tokenizer
|
|
from llmtuner.eval.template import get_eval_template
|
|
from llmtuner.extras.constants import CHOICES, SUBJECTS
|
|
from llmtuner.model import dispatch_model, get_eval_args, load_model_and_tokenizer
|
|
|
|
|
|
class Evaluator:
|
|
|
|
def __init__(self, args: Optional[Dict[str, Any]] = None) -> None:
|
|
self.model_args, self.data_args, self.eval_args, finetuning_args = get_eval_args(args)
|
|
self.model, self.tokenizer = load_model_and_tokenizer(self.model_args, finetuning_args)
|
|
self.tokenizer.padding_side = "right" # avoid overflow issue in batched inference for llama2
|
|
self.model = dispatch_model(self.model)
|
|
self.template = get_template_and_fix_tokenizer(self.data_args.template, self.tokenizer)
|
|
self.eval_template = get_eval_template(self.eval_args.lang)
|
|
self.choice_inputs = self._encode_choices()
|
|
|
|
def _encode_choices(self) -> List[int]:
|
|
if isinstance(getattr(self.tokenizer, "tokenizer", None), tiktoken.Encoding): # for tiktoken tokenizer (Qwen)
|
|
kwargs = dict(allowed_special="all")
|
|
else:
|
|
kwargs = dict(add_special_tokens=False)
|
|
|
|
return [self.tokenizer.encode(self.eval_template.prefix + ch, **kwargs)[-1] for ch in CHOICES]
|
|
|
|
@torch.inference_mode()
|
|
def batch_inference(self, batch_input: Dict[str, torch.Tensor]) -> List[str]:
|
|
logits = self.model(**batch_input).logits
|
|
lengths = torch.sum(batch_input["attention_mask"], dim=-1)
|
|
word_probs = torch.stack([logits[i, lengths[i] - 1] for i in range(len(lengths))], dim=0)
|
|
choice_probs = torch.nn.functional.softmax(word_probs[:, self.choice_inputs], dim=-1).detach()
|
|
return [chr(ord("A") + offset.item()) for offset in torch.argmax(choice_probs, dim=-1)]
|
|
|
|
def eval(self) -> None:
|
|
mapping = cached_file(
|
|
path_or_repo_id = os.path.join(self.eval_args.task_dir, self.eval_args.task),
|
|
filename="mapping.json",
|
|
cache_dir=self.model_args.cache_dir,
|
|
token=self.model_args.hf_hub_token
|
|
)
|
|
|
|
with open(mapping, "r", encoding="utf-8") as f:
|
|
categorys: Dict[str, Dict[str, str]] = json.load(f)
|
|
|
|
category_corrects = {subj: np.array([], dtype="bool") for subj in SUBJECTS}
|
|
pbar = tqdm(categorys.keys(), desc="Processing subjects", position=0)
|
|
results = {}
|
|
for subject in pbar:
|
|
dataset = load_dataset(
|
|
path=os.path.join(self.eval_args.task_dir, self.eval_args.task),
|
|
name=subject,
|
|
cache_dir=self.model_args.cache_dir,
|
|
download_mode=self.eval_args.download_mode,
|
|
token=self.model_args.hf_hub_token
|
|
)
|
|
pbar.set_postfix_str(categorys[subject]["name"])
|
|
inputs, outputs, labels = [], [], []
|
|
for i in trange(len(dataset[self.data_args.split]), desc="Formatting batches", position=1, leave=False):
|
|
support_set = dataset["train"].shuffle().select(range(min(self.eval_args.n_shot, len(dataset["train"]))))
|
|
query, resp, history = self.eval_template.format_example(
|
|
target_data=dataset[self.data_args.split][i],
|
|
support_set=support_set,
|
|
subject_name=categorys[subject]["name"],
|
|
use_history=self.template.use_history
|
|
)
|
|
input_ids, _ = self.template.encode_oneturn(
|
|
tokenizer=self.tokenizer, query=query, resp=resp, history=history
|
|
)
|
|
inputs.append({"input_ids": input_ids, "attention_mask": [1] * len(input_ids)})
|
|
labels.append(resp)
|
|
|
|
for i in trange(0, len(inputs), self.eval_args.batch_size, desc="Predicting batches", position=1, leave=False):
|
|
batch_input = self.tokenizer.pad(
|
|
inputs[i : i + self.eval_args.batch_size], return_attention_mask=True, return_tensors="pt"
|
|
).to(self.model.device)
|
|
preds = self.batch_inference(batch_input)
|
|
outputs += preds
|
|
|
|
corrects = (np.array(outputs) == np.array(labels))
|
|
category_name = categorys[subject]["category"]
|
|
category_corrects[category_name] = np.concatenate([category_corrects[category_name], corrects], axis=0)
|
|
category_corrects["Average"] = np.concatenate([category_corrects["Average"], corrects], axis=0)
|
|
results[subject] = {str(i): outputs[i] for i in range(len(outputs))}
|
|
|
|
pbar.close()
|
|
self._save_results(category_corrects, results)
|
|
|
|
def _save_results(self, category_corrects: Dict[str, np.ndarray], results: Dict[str, Dict[int, str]]) -> None:
|
|
score_info = "\n".join([
|
|
"{:>15}: {:.2f}".format(category_name, 100 * np.mean(category_correct))
|
|
for category_name, category_correct in category_corrects.items() if len(category_correct)
|
|
])
|
|
print(score_info)
|
|
if self.eval_args.save_dir is not None:
|
|
os.makedirs(self.eval_args.save_dir, exist_ok=False)
|
|
with open(os.path.join(self.eval_args.save_dir, "results.json"), "w", encoding="utf-8", newline="\n") as f:
|
|
json.dump(results, f, indent=2)
|
|
|
|
with open(os.path.join(self.eval_args.save_dir, "results.log"), "w", encoding="utf-8", newline="\n") as f:
|
|
f.write(score_info)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
evaluator = Evaluator()
|
|
evaluator.eval()
|