mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-02 03:32:50 +08:00
174 lines
5.9 KiB
Python
174 lines
5.9 KiB
Python
# coding=utf-8
|
|
# Evaluates the performance of pre-trained models.
|
|
# Usage: python evaluate.py --model_name_or_path path_to_model --checkpoint_dir path_to_ckpt --template vanilla
|
|
# --task ceval --split validation --lang zh --n_shot 5 --batch_size 4
|
|
# Inspired by: https://github.com/hendrycks/test/blob/master/evaluate_flan.py
|
|
|
|
import os
|
|
import fire
|
|
import json
|
|
import torch
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
from typing import TYPE_CHECKING, Dict, List, Literal, Optional, Tuple
|
|
from datasets import load_dataset
|
|
from dataclasses import dataclass
|
|
|
|
from llmtuner import ChatModel
|
|
|
|
if TYPE_CHECKING:
|
|
from datasets import Dataset
|
|
|
|
|
|
choices = ["A", "B", "C", "D"]
|
|
|
|
|
|
@dataclass
|
|
class EvalTemplate:
|
|
|
|
system: str
|
|
choice: str
|
|
answer: str
|
|
|
|
def parse_example(
|
|
self,
|
|
example: Dict[str, str]
|
|
) -> Tuple[str, str]:
|
|
candidates = [self.choice.format(choice=ch, content=example[ch]) for ch in choices if ch in example]
|
|
return "".join([example["question"]] + candidates + [self.answer]), example["answer"]
|
|
|
|
def format_example(
|
|
self,
|
|
target_data: Dict[str, str],
|
|
support_set: "Dataset",
|
|
subject_name: str,
|
|
use_history: bool
|
|
) -> Tuple[str, str, List[Tuple[str, str]]]:
|
|
query, resp = self.parse_example(target_data)
|
|
history = [self.parse_example(support_set[k]) for k in range(len(support_set))]
|
|
|
|
if len(history):
|
|
temp = history.pop(0)
|
|
history.insert(0, (self.system.format(subject=subject_name) + temp[0], temp[1]))
|
|
else:
|
|
query = self.system.format(subject=subject_name) + query
|
|
|
|
if not use_history:
|
|
query = "\n\n".join(["".join(item) for item in history] + [query])
|
|
history = []
|
|
return query, resp, history
|
|
|
|
|
|
eval_templates = {
|
|
"en": EvalTemplate(
|
|
system="The following are multiple choice questions (with answers) about {subject}.\n\n",
|
|
choice="\n{choice}. {content}",
|
|
answer="\nAnswer: "
|
|
),
|
|
"zh": EvalTemplate(
|
|
system="以下是中国关于{subject}考试的单项选择题,请选出其中的正确答案。\n\n",
|
|
choice="\n{choice}. {content}",
|
|
answer="\n答案:"
|
|
)
|
|
}
|
|
|
|
|
|
@torch.inference_mode()
|
|
def batch_inference(
|
|
chat_model: ChatModel,
|
|
batch_input: Dict[str, torch.Tensor]
|
|
) -> List[str]:
|
|
logits = chat_model.model(**batch_input).logits
|
|
probs = torch.nn.functional.softmax(
|
|
torch.stack(
|
|
[
|
|
logits[:, -1, chat_model.tokenizer.encode("\nA")[-1]],
|
|
logits[:, -1, chat_model.tokenizer.encode("\nB")[-1]],
|
|
logits[:, -1, chat_model.tokenizer.encode("\nC")[-1]],
|
|
logits[:, -1, chat_model.tokenizer.encode("\nD")[-1]]
|
|
],
|
|
dim=-1
|
|
),
|
|
dim=-1
|
|
).detach()
|
|
return [chr(ord("A") + offset.item()) for offset in torch.argmax(probs, dim=-1)]
|
|
|
|
|
|
def evaluate(
|
|
model_name_or_path: str,
|
|
finetuning_type: Optional[str] = "lora",
|
|
checkpoint_dir: Optional[str] = None,
|
|
template: Optional[str] = "vanilla",
|
|
task: Optional[str] = "ceval",
|
|
dataset_dir: Optional[str] = "evaluation",
|
|
split: Optional[Literal["validation", "test"]] = "validation",
|
|
lang: Optional[Literal["zh", "en"]] = "zh",
|
|
n_shot: Optional[int] = 5,
|
|
batch_size: Optional[int] = 4
|
|
):
|
|
with open(os.path.join(dataset_dir, task, "mapping.json"), "r", encoding="utf-8") as f:
|
|
categorys = json.load(f)
|
|
|
|
chat_model = ChatModel(dict(
|
|
model_name_or_path=model_name_or_path,
|
|
finetuning_type=finetuning_type,
|
|
checkpoint_dir=checkpoint_dir,
|
|
template=template
|
|
))
|
|
chat_model.tokenizer.padding_side = "left"
|
|
eval_template = eval_templates[lang]
|
|
category_corrects: Dict[str, np.ndarray] = {
|
|
"STEM": np.array([], dtype="bool"),
|
|
"Social Sciences": np.array([], dtype="bool"),
|
|
"Humanities": np.array([], dtype="bool"),
|
|
"Other": np.array([], dtype="bool")
|
|
}
|
|
overall_corrects = np.array([], dtype="bool")
|
|
|
|
pbar = tqdm(categorys.keys())
|
|
for subject in pbar:
|
|
pbar.set_postfix_str(categorys[subject]["name"])
|
|
inputs, labels = [], []
|
|
dataset = load_dataset(os.path.join(dataset_dir, task), subject)
|
|
for i in range(len(dataset[split])):
|
|
query, resp, history = eval_template.format_example(
|
|
target_data=dataset[split][i],
|
|
support_set=dataset["train"].select(range(min(n_shot, len(dataset["train"])))),
|
|
subject_name=categorys[subject]["name"],
|
|
use_history=chat_model.template.use_history
|
|
)
|
|
input_ids, _ = chat_model.template.encode_oneturn(
|
|
tokenizer=chat_model.tokenizer,
|
|
query=query,
|
|
resp=resp,
|
|
history=history
|
|
)
|
|
inputs.append({
|
|
"input_ids": input_ids,
|
|
"attention_mask": [1] * len(input_ids)
|
|
})
|
|
labels.append(resp)
|
|
|
|
outputs = []
|
|
for i in range(0, len(inputs), batch_size):
|
|
batch_input = chat_model.tokenizer.pad(
|
|
inputs[i : i + batch_size],
|
|
return_attention_mask=True,
|
|
return_tensors="pt"
|
|
).to(chat_model.model.device)
|
|
preds = batch_inference(chat_model, batch_input)
|
|
outputs += preds
|
|
|
|
corrects = (np.array(outputs) == np.array(labels))
|
|
category_name = categorys[subject]["category"]
|
|
category_corrects[category_name] = np.concatenate([category_corrects[category_name], corrects], axis=0)
|
|
overall_corrects = np.concatenate([overall_corrects, corrects], axis=0)
|
|
|
|
print("Average accuracy: {:.2f}".format(100 * np.mean(overall_corrects)))
|
|
for category_name, category_correct in category_corrects.items():
|
|
print(" {} - {:.2f}".format(category_name, 100 * np.mean(category_correct)))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire(evaluate)
|