mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-05 21:22:50 +08:00
172 lines
6.6 KiB
Python
172 lines
6.6 KiB
Python
import torch
|
|
import tiktoken
|
|
from dataclasses import dataclass
|
|
from typing import Any, Dict, Generator, List, Literal, Optional, Tuple
|
|
from threading import Thread
|
|
from transformers import GenerationConfig, TextIteratorStreamer
|
|
|
|
from llmtuner.data.template import get_template_and_fix_tokenizer
|
|
from llmtuner.extras.misc import get_logits_processor
|
|
from llmtuner.model import dispatch_model, get_infer_args, load_model_and_tokenizer
|
|
|
|
|
|
@dataclass
|
|
class Response:
|
|
|
|
response_text: str
|
|
response_length: int
|
|
prompt_length: int
|
|
finish_reason: Literal["stop", "length"]
|
|
|
|
|
|
class ChatModel:
|
|
|
|
def __init__(self, args: Optional[Dict[str, Any]] = None) -> None:
|
|
model_args, data_args, finetuning_args, self.generating_args = get_infer_args(args)
|
|
self.can_generate = (finetuning_args.stage == "sft")
|
|
self.model, self.tokenizer = load_model_and_tokenizer(
|
|
model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate)
|
|
)
|
|
self.tokenizer.padding_side = "left" if self.can_generate else "right"
|
|
self.model = dispatch_model(self.model)
|
|
self.template = get_template_and_fix_tokenizer(data_args.template, self.tokenizer)
|
|
|
|
def _process_args(
|
|
self,
|
|
query: str,
|
|
history: Optional[List[Tuple[str, str]]] = None,
|
|
system: Optional[str] = None,
|
|
**input_kwargs
|
|
) -> Tuple[Dict[str, Any], int]:
|
|
prompt, _ = self.template.encode_oneturn(
|
|
tokenizer=self.tokenizer, query=query, resp="", history=history, system=system
|
|
)
|
|
prompt_length = len(prompt)
|
|
input_ids = torch.tensor([prompt], device=self.model.device)
|
|
|
|
do_sample = input_kwargs.pop("do_sample", None)
|
|
temperature = input_kwargs.pop("temperature", None)
|
|
top_p = input_kwargs.pop("top_p", None)
|
|
top_k = input_kwargs.pop("top_k", None)
|
|
num_return_sequences = input_kwargs.pop("num_return_sequences", None)
|
|
repetition_penalty = input_kwargs.pop("repetition_penalty", None)
|
|
max_length = input_kwargs.pop("max_length", None)
|
|
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
|
|
|
|
generating_args = self.generating_args.to_dict()
|
|
generating_args.update(dict(
|
|
do_sample=do_sample if do_sample is not None else generating_args["do_sample"],
|
|
temperature=temperature or generating_args["temperature"],
|
|
top_p=top_p or generating_args["top_p"],
|
|
top_k=top_k or generating_args["top_k"],
|
|
num_return_sequences=num_return_sequences or 1,
|
|
repetition_penalty=repetition_penalty or generating_args["repetition_penalty"],
|
|
eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
|
|
pad_token_id=self.tokenizer.pad_token_id
|
|
))
|
|
|
|
if isinstance(num_return_sequences, int) and num_return_sequences > 1:
|
|
generating_args["do_sample"] = True
|
|
|
|
if max_length:
|
|
generating_args.pop("max_new_tokens", None)
|
|
generating_args["max_length"] = max_length
|
|
|
|
if max_new_tokens:
|
|
generating_args.pop("max_length", None)
|
|
generating_args["max_new_tokens"] = max_new_tokens
|
|
|
|
gen_kwargs = dict(
|
|
inputs=input_ids,
|
|
generation_config=GenerationConfig(**generating_args),
|
|
logits_processor=get_logits_processor()
|
|
)
|
|
|
|
return gen_kwargs, prompt_length
|
|
|
|
@torch.inference_mode()
|
|
def chat(
|
|
self,
|
|
query: str,
|
|
history: Optional[List[Tuple[str, str]]] = None,
|
|
system: Optional[str] = None,
|
|
**input_kwargs
|
|
) -> List[Response]:
|
|
r"""
|
|
Args: query, history, system, **input_kwargs
|
|
|
|
Returns: [(response_text, prompt_length, response_length)] * n (default n=1)
|
|
"""
|
|
gen_kwargs, prompt_length = self._process_args(query, history, system, **input_kwargs)
|
|
generate_output = self.model.generate(**gen_kwargs)
|
|
response_ids = generate_output[:, prompt_length:]
|
|
response = self.tokenizer.batch_decode(
|
|
response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
|
)
|
|
results = []
|
|
for i in range(len(response)):
|
|
eos_index = (response_ids[i] == self.tokenizer.eos_token_id).nonzero()
|
|
response_length = (eos_index[0].item() + 1) if len(eos_index) else len(response_ids[i])
|
|
results.append(Response(
|
|
response_text=response[i],
|
|
response_length=response_length,
|
|
prompt_length=prompt_length,
|
|
finish_reason="stop" if len(eos_index) else "length"
|
|
))
|
|
|
|
return results
|
|
|
|
@torch.inference_mode()
|
|
def stream_chat(
|
|
self,
|
|
query: str,
|
|
history: Optional[List[Tuple[str, str]]] = None,
|
|
system: Optional[str] = None,
|
|
**input_kwargs
|
|
) -> Generator[str, None, None]:
|
|
gen_kwargs, _ = self._process_args(query, history, system, **input_kwargs)
|
|
streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
|
gen_kwargs["streamer"] = streamer
|
|
|
|
thread = Thread(target=self.model.generate, kwargs=gen_kwargs)
|
|
thread.start()
|
|
|
|
yield from streamer
|
|
|
|
@torch.inference_mode()
|
|
def get_scores(
|
|
self,
|
|
batch_input: List[str],
|
|
**input_kwargs
|
|
) -> List[float]:
|
|
if isinstance(getattr(self.tokenizer, "tokenizer", None), tiktoken.Encoding): # for tiktoken tokenizer (Qwen)
|
|
kwargs = dict(allowed_special="all")
|
|
else:
|
|
kwargs = dict(add_special_tokens=True)
|
|
|
|
max_length = input_kwargs.pop("max_length", None)
|
|
device = getattr(self.model.pretrained_model, "device", "cuda")
|
|
|
|
inputs = self.tokenizer(
|
|
batch_input,
|
|
padding=True,
|
|
truncation=True,
|
|
max_length=max_length or getattr(self.model.config, "max_position_embeddings", 1024),
|
|
return_tensors="pt",
|
|
**kwargs
|
|
).to(device)
|
|
|
|
input_ids: torch.Tensor = inputs["input_ids"]
|
|
_, _, values = self.model(**inputs, output_hidden_states=True, return_dict=True)
|
|
|
|
if getattr(self.model.config, "model_type", None) == "chatglm":
|
|
values = torch.transpose(values, 0, 1)
|
|
|
|
scores = []
|
|
for i in range(input_ids.size(0)):
|
|
end_indexes = (input_ids[i] != self.tokenizer.pad_token_id).nonzero()
|
|
end_index = end_indexes[-1].item() if len(end_indexes) else 0
|
|
scores.append(values[i, end_index].nan_to_num().item())
|
|
|
|
return scores
|