mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-02 03:32:50 +08:00
194 lines
6.7 KiB
Python
194 lines
6.7 KiB
Python
# Copyright 2024 THUDM and the LlamaFactory team.
|
|
#
|
|
# This code is inspired by the THUDM's ChatGLM implementation.
|
|
# https://github.com/THUDM/ChatGLM-6B/blob/main/cli_demo.py
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import asyncio
|
|
import os
|
|
from threading import Thread
|
|
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, Generator, List, Optional, Sequence
|
|
|
|
from ..extras.constants import EngineName
|
|
from ..extras.misc import torch_gc
|
|
from ..hparams import get_infer_args
|
|
from .hf_engine import HuggingfaceEngine
|
|
from .vllm_engine import VllmEngine
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from ..data.mm_plugin import AudioInput, ImageInput, VideoInput
|
|
from .base_engine import BaseEngine, Response
|
|
|
|
|
|
def _start_background_loop(loop: "asyncio.AbstractEventLoop") -> None:
|
|
asyncio.set_event_loop(loop)
|
|
loop.run_forever()
|
|
|
|
|
|
class ChatModel:
|
|
r"""
|
|
General class for chat models. Backed by huggingface or vllm engines.
|
|
|
|
Supports both sync and async methods.
|
|
Sync methods: chat(), stream_chat() and get_scores().
|
|
Async methods: achat(), astream_chat() and aget_scores().
|
|
"""
|
|
|
|
def __init__(self, args: Optional[Dict[str, Any]] = None) -> None:
|
|
model_args, data_args, finetuning_args, generating_args = get_infer_args(args)
|
|
if model_args.infer_backend == EngineName.HF:
|
|
self.engine: "BaseEngine" = HuggingfaceEngine(model_args, data_args, finetuning_args, generating_args)
|
|
elif model_args.infer_backend == EngineName.VLLM:
|
|
self.engine: "BaseEngine" = VllmEngine(model_args, data_args, finetuning_args, generating_args)
|
|
else:
|
|
raise NotImplementedError(f"Unknown backend: {model_args.infer_backend}")
|
|
|
|
self._loop = asyncio.new_event_loop()
|
|
self._thread = Thread(target=_start_background_loop, args=(self._loop,), daemon=True)
|
|
self._thread.start()
|
|
|
|
def chat(
|
|
self,
|
|
messages: Sequence[Dict[str, str]],
|
|
system: Optional[str] = None,
|
|
tools: Optional[str] = None,
|
|
images: Optional[Sequence["ImageInput"]] = None,
|
|
videos: Optional[Sequence["VideoInput"]] = None,
|
|
audios: Optional[Sequence["AudioInput"]] = None,
|
|
**input_kwargs,
|
|
) -> List["Response"]:
|
|
r"""
|
|
Gets a list of responses of the chat model.
|
|
"""
|
|
task = asyncio.run_coroutine_threadsafe(
|
|
self.achat(messages, system, tools, images, videos, audios, **input_kwargs), self._loop
|
|
)
|
|
return task.result()
|
|
|
|
async def achat(
|
|
self,
|
|
messages: Sequence[Dict[str, str]],
|
|
system: Optional[str] = None,
|
|
tools: Optional[str] = None,
|
|
images: Optional[Sequence["ImageInput"]] = None,
|
|
videos: Optional[Sequence["VideoInput"]] = None,
|
|
audios: Optional[Sequence["AudioInput"]] = None,
|
|
**input_kwargs,
|
|
) -> List["Response"]:
|
|
r"""
|
|
Asynchronously gets a list of responses of the chat model.
|
|
"""
|
|
return await self.engine.chat(messages, system, tools, images, videos, audios, **input_kwargs)
|
|
|
|
def stream_chat(
|
|
self,
|
|
messages: Sequence[Dict[str, str]],
|
|
system: Optional[str] = None,
|
|
tools: Optional[str] = None,
|
|
images: Optional[Sequence["ImageInput"]] = None,
|
|
videos: Optional[Sequence["VideoInput"]] = None,
|
|
audios: Optional[Sequence["AudioInput"]] = None,
|
|
**input_kwargs,
|
|
) -> Generator[str, None, None]:
|
|
r"""
|
|
Gets the response token-by-token of the chat model.
|
|
"""
|
|
generator = self.astream_chat(messages, system, tools, images, videos, audios, **input_kwargs)
|
|
while True:
|
|
try:
|
|
task = asyncio.run_coroutine_threadsafe(generator.__anext__(), self._loop)
|
|
yield task.result()
|
|
except StopAsyncIteration:
|
|
break
|
|
|
|
async def astream_chat(
|
|
self,
|
|
messages: Sequence[Dict[str, str]],
|
|
system: Optional[str] = None,
|
|
tools: Optional[str] = None,
|
|
images: Optional[Sequence["ImageInput"]] = None,
|
|
videos: Optional[Sequence["VideoInput"]] = None,
|
|
audios: Optional[Sequence["AudioInput"]] = None,
|
|
**input_kwargs,
|
|
) -> AsyncGenerator[str, None]:
|
|
r"""
|
|
Asynchronously gets the response token-by-token of the chat model.
|
|
"""
|
|
async for new_token in self.engine.stream_chat(
|
|
messages, system, tools, images, videos, audios, **input_kwargs
|
|
):
|
|
yield new_token
|
|
|
|
def get_scores(
|
|
self,
|
|
batch_input: List[str],
|
|
**input_kwargs,
|
|
) -> List[float]:
|
|
r"""
|
|
Gets a list of scores of the reward model.
|
|
"""
|
|
task = asyncio.run_coroutine_threadsafe(self.aget_scores(batch_input, **input_kwargs), self._loop)
|
|
return task.result()
|
|
|
|
async def aget_scores(
|
|
self,
|
|
batch_input: List[str],
|
|
**input_kwargs,
|
|
) -> List[float]:
|
|
r"""
|
|
Asynchronously gets a list of scores of the reward model.
|
|
"""
|
|
return await self.engine.get_scores(batch_input, **input_kwargs)
|
|
|
|
|
|
def run_chat() -> None:
|
|
if os.name != "nt":
|
|
try:
|
|
import readline # noqa: F401
|
|
except ImportError:
|
|
print("Install `readline` for a better experience.")
|
|
|
|
chat_model = ChatModel()
|
|
messages = []
|
|
print("Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application.")
|
|
|
|
while True:
|
|
try:
|
|
query = input("\nUser: ")
|
|
except UnicodeDecodeError:
|
|
print("Detected decoding error at the inputs, please set the terminal encoding to utf-8.")
|
|
continue
|
|
except Exception:
|
|
raise
|
|
|
|
if query.strip() == "exit":
|
|
break
|
|
|
|
if query.strip() == "clear":
|
|
messages = []
|
|
torch_gc()
|
|
print("History has been removed.")
|
|
continue
|
|
|
|
messages.append({"role": "user", "content": query})
|
|
print("Assistant: ", end="", flush=True)
|
|
|
|
response = ""
|
|
for new_text in chat_model.stream_chat(messages):
|
|
print(new_text, end="", flush=True)
|
|
response += new_text
|
|
print()
|
|
messages.append({"role": "assistant", "content": response})
|