hiyouga 59e6ebf039 update trainers
Former-commit-id: d0dd6eefed0b86895ed00a7cafb331e5193db645
2024-03-28 18:16:27 +08:00

37 lines
1.1 KiB
Python

from typing import TYPE_CHECKING, Optional
from transformers import Trainer
from ...extras.logging import get_logger
from ..utils import create_custom_optimzer, create_custom_scheduler
if TYPE_CHECKING:
import torch
from ...hparams import FinetuningArguments
logger = get_logger(__name__)
class CustomTrainer(Trainer):
r"""
Inherits Trainer for custom optimizer.
"""
def __init__(self, finetuning_args: "FinetuningArguments", **kwargs) -> None:
super().__init__(**kwargs)
self.finetuning_args = finetuning_args
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
return super().create_optimizer()
def create_scheduler(
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
) -> "torch.optim.lr_scheduler.LRScheduler":
create_custom_scheduler(self.args, num_training_steps, optimizer)
return super().create_scheduler(num_training_steps, optimizer)