mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-07 06:02:50 +08:00
68 lines
2.6 KiB
Python
68 lines
2.6 KiB
Python
# Copyright 2024 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
from typing import TYPE_CHECKING
|
|
|
|
from ...extras.logging import get_logger
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import PretrainedConfig
|
|
|
|
from ...hparams import ModelArguments
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
def apply_liger_kernel(
|
|
config: "PretrainedConfig",
|
|
model_args: "ModelArguments",
|
|
is_trainable: bool,
|
|
require_logits: bool,
|
|
) -> None:
|
|
if not is_trainable or not model_args.enable_liger_kernel:
|
|
return
|
|
|
|
model_type = getattr(config, "model_type", None)
|
|
if model_type == "gemma":
|
|
from liger_kernel.transformers import apply_liger_kernel_to_gemma as apply_liger_kernel
|
|
elif model_type == "gemma2":
|
|
from liger_kernel.transformers import apply_liger_kernel_to_gemma2 as apply_liger_kernel
|
|
elif model_type == "llama":
|
|
from liger_kernel.transformers import apply_liger_kernel_to_llama as apply_liger_kernel
|
|
elif model_type == "mistral":
|
|
from liger_kernel.transformers import apply_liger_kernel_to_mistral as apply_liger_kernel
|
|
elif model_type == "mixtral":
|
|
from liger_kernel.transformers import apply_liger_kernel_to_mixtral as apply_liger_kernel
|
|
elif model_type == "phi3":
|
|
from liger_kernel.transformers import apply_liger_kernel_to_phi3 as apply_liger_kernel
|
|
elif model_type == "qwen2":
|
|
from liger_kernel.transformers import apply_liger_kernel_to_qwen2 as apply_liger_kernel
|
|
elif model_type == "qwen2_vl":
|
|
from liger_kernel.transformers import apply_liger_kernel_to_qwen2_vl as apply_liger_kernel
|
|
else:
|
|
logger.warning("Current model does not support liger kernel.")
|
|
return
|
|
|
|
if require_logits and "fused_linear_cross_entropy" in inspect.signature(apply_liger_kernel).parameters:
|
|
logger.info("Current training stage does not support chunked cross entropy.")
|
|
kwargs = {"fused_linear_cross_entropy": False}
|
|
else:
|
|
kwargs = {}
|
|
|
|
apply_liger_kernel(**kwargs)
|
|
logger.info("Liger kernel has been applied to the model.")
|