mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-07-31 10:42:50 +08:00
130 lines
4.4 KiB
Python
130 lines
4.4 KiB
Python
# coding=utf-8
|
|
# Implements user interface in browser for LLaMA fine-tuned with PEFT.
|
|
# Usage: python web_demo.py --checkpoint_dir path_to_checkpoint
|
|
|
|
|
|
import torch
|
|
import mdtex2html
|
|
import gradio as gr
|
|
|
|
from utils import ModelArguments, auto_configure_device_map, load_pretrained
|
|
from transformers import HfArgumentParser
|
|
|
|
|
|
parser = HfArgumentParser(ModelArguments)
|
|
model_args, = parser.parse_args_into_dataclasses()
|
|
model, tokenizer = load_pretrained(model_args)
|
|
if torch.cuda.device_count() > 1:
|
|
from accelerate import dispatch_model
|
|
device_map = auto_configure_device_map(torch.cuda.device_count())
|
|
model = dispatch_model(model, device_map)
|
|
else:
|
|
model = model.cuda()
|
|
model.eval()
|
|
|
|
|
|
"""Override Chatbot.postprocess"""
|
|
|
|
def postprocess(self, y):
|
|
if y is None:
|
|
return []
|
|
for i, (message, response) in enumerate(y):
|
|
y[i] = (
|
|
None if message is None else mdtex2html.convert((message)),
|
|
None if response is None else mdtex2html.convert(response),
|
|
)
|
|
return y
|
|
|
|
|
|
gr.Chatbot.postprocess = postprocess
|
|
|
|
|
|
def parse_text(text): # copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT
|
|
lines = text.split("\n")
|
|
lines = [line for line in lines if line != ""]
|
|
count = 0
|
|
for i, line in enumerate(lines):
|
|
if "```" in line:
|
|
count += 1
|
|
items = line.split('`')
|
|
if count % 2 == 1:
|
|
lines[i] = f'<pre><code class="language-{items[-1]}">'
|
|
else:
|
|
lines[i] = f'<br></code></pre>'
|
|
else:
|
|
if i > 0:
|
|
if count % 2 == 1:
|
|
line = line.replace("`", "\`")
|
|
line = line.replace("<", "<")
|
|
line = line.replace(">", ">")
|
|
line = line.replace(" ", " ")
|
|
line = line.replace("*", "*")
|
|
line = line.replace("_", "_")
|
|
line = line.replace("-", "-")
|
|
line = line.replace(".", ".")
|
|
line = line.replace("!", "!")
|
|
line = line.replace("(", "(")
|
|
line = line.replace(")", ")")
|
|
line = line.replace("$", "$")
|
|
lines[i] = "<br>"+line
|
|
text = "".join(lines)
|
|
return text
|
|
|
|
|
|
def predict(input, chatbot, max_length, top_p, temperature, history):
|
|
chatbot.append((parse_text(input), ""))
|
|
|
|
inputs = tokenizer([input], return_tensors="pt")
|
|
inputs = inputs.to(model.device)
|
|
gen_kwargs = {
|
|
"do_sample": True,
|
|
"top_p": top_p,
|
|
"temperature": temperature,
|
|
"num_beams": 1,
|
|
"max_length": max_length,
|
|
"repetition_penalty": 1.0
|
|
}
|
|
with torch.no_grad():
|
|
generation_output = model.generate(**inputs, **gen_kwargs)
|
|
outputs = generation_output.tolist()[0][len(inputs["input_ids"][0]):]
|
|
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
|
history = history + [(input, response)]
|
|
chatbot[-1] = (parse_text(input), parse_text(response))
|
|
yield chatbot, history
|
|
|
|
|
|
def reset_user_input():
|
|
return gr.update(value='')
|
|
|
|
|
|
def reset_state():
|
|
return [], []
|
|
|
|
|
|
with gr.Blocks() as demo:
|
|
gr.HTML("""<h1 align="center">ChatGLM-Efficient-Tuning</h1>""")
|
|
|
|
chatbot = gr.Chatbot()
|
|
with gr.Row():
|
|
with gr.Column(scale=4):
|
|
with gr.Column(scale=12):
|
|
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
|
|
container=False)
|
|
with gr.Column(min_width=32, scale=1):
|
|
submitBtn = gr.Button("Submit", variant="primary")
|
|
with gr.Column(scale=1):
|
|
emptyBtn = gr.Button("Clear History")
|
|
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
|
|
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
|
|
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
|
|
|
|
history = gr.State([])
|
|
|
|
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history],
|
|
show_progress=True)
|
|
submitBtn.click(reset_user_input, [], [user_input])
|
|
|
|
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
|
|
|
|
demo.queue().launch(server_name="0.0.0.0", share=False, inbrowser=True)
|