mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-10-14 15:52:49 +08:00
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
174 lines
6.9 KiB
Python
174 lines
6.9 KiB
Python
# Copyright 2025 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
from dataclasses import dataclass
|
|
from typing import Any
|
|
|
|
import fire
|
|
import torch
|
|
from peft import PeftModel
|
|
from torch.utils.data import Dataset
|
|
from transformers import DataCollatorForSeq2Seq, Qwen2_5_VLProcessor
|
|
|
|
from llamafactory.extras.constants import IGNORE_INDEX
|
|
from llamafactory.hparams import get_train_args
|
|
from llamafactory.model import load_model, load_tokenizer
|
|
from llamafactory.train.callbacks import LogCallback
|
|
from llamafactory.train.sft.trainer import CustomSeq2SeqTrainer
|
|
|
|
|
|
class DummyDataset(Dataset):
|
|
def __init__(self, size: int = 1000, seq_length: int = 1024, processor: Qwen2_5_VLProcessor = None):
|
|
self.size = size
|
|
self.seq_length = seq_length
|
|
self.vocab_size = 32768
|
|
self.processor = processor
|
|
|
|
image_token_num = 18 * 18 // (2 * 2)
|
|
image_t = 2
|
|
|
|
self.text_seqlen = seq_length // 4 # 25% text
|
|
video_seq_length = self.seq_length - self.text_seqlen - image_t * image_token_num
|
|
video_t = video_seq_length // image_token_num
|
|
|
|
self.image_size = [18 * 18 * image_t, 1176]
|
|
self.image_grid_thw = torch.tensor([[1, 18, 18]] * image_t, dtype=torch.long)
|
|
self.image_seqlen = image_t * image_token_num
|
|
|
|
self.video_size = [18 * 18 * video_t, 1176]
|
|
self.video_grid_thw = torch.tensor([[video_t, 18, 18]], dtype=torch.long)
|
|
self.video_seqlen = video_t * image_token_num
|
|
|
|
def __len__(self):
|
|
return self.size
|
|
|
|
def __getitem__(self, index: int):
|
|
input_ids = torch.randint(low=0, high=self.vocab_size, size=(self.seq_length,))
|
|
input_ids[: self.image_seqlen] = self.processor.image_token_id
|
|
input_ids[self.image_seqlen : self.image_seqlen + self.video_seqlen] = self.processor.video_token_id
|
|
|
|
attention_mask = torch.ones((self.seq_length,), dtype=torch.long)
|
|
labels = input_ids.clone()
|
|
labels[: self.image_seqlen + self.video_seqlen] = IGNORE_INDEX
|
|
pixel_values = torch.rand(self.image_size, dtype=torch.float32)
|
|
pixel_values_videos = torch.rand(self.video_size, dtype=torch.float32)
|
|
return {
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
"labels": labels,
|
|
"pixel_values": pixel_values,
|
|
"pixel_values_videos": pixel_values_videos,
|
|
"image_grid_thw": self.image_grid_thw,
|
|
"video_grid_thw": self.video_grid_thw,
|
|
}
|
|
|
|
|
|
@dataclass
|
|
class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
|
|
def __post_init__(self):
|
|
if isinstance(self.model, PeftModel):
|
|
self.model = self.model.base_model.model
|
|
|
|
if self.model is not None and hasattr(self.model, "get_rope_index"): # for qwen2vl mrope
|
|
self.get_rope_func = self.model.get_rope_index # transformers < 4.52.0 or qwen2.5 omni
|
|
elif self.model is not None and hasattr(self.model, "model") and hasattr(self.model.model, "get_rope_index"):
|
|
self.get_rope_func = self.model.model.get_rope_index # transformers >= 4.52.0
|
|
else:
|
|
self.get_rope_func = None
|
|
|
|
def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]:
|
|
batch_pixel_values = [feature.pop("pixel_values") for feature in features]
|
|
batch_pixel_values_videos = [feature.pop("pixel_values_videos") for feature in features]
|
|
batch_image_grid_thw = [feature.pop("image_grid_thw") for feature in features]
|
|
batch_video_grid_thw = [feature.pop("video_grid_thw") for feature in features]
|
|
|
|
batch: dict[str, torch.Tensor] = super().__call__(features)
|
|
|
|
batch["pixel_values"] = torch.cat(batch_pixel_values, dim=0)
|
|
batch["pixel_values_videos"] = torch.cat(batch_pixel_values_videos, dim=0)
|
|
batch["image_grid_thw"] = torch.cat(batch_image_grid_thw, dim=0)
|
|
batch["video_grid_thw"] = torch.cat(batch_video_grid_thw, dim=0)
|
|
|
|
if self.get_rope_func is not None:
|
|
rope_index_kwargs = {
|
|
"input_ids": batch["input_ids"],
|
|
"image_grid_thw": batch["image_grid_thw"],
|
|
"video_grid_thw": batch["video_grid_thw"],
|
|
"attention_mask": (batch["attention_mask"] >= 1).float(),
|
|
}
|
|
batch["position_ids"], batch["rope_deltas"] = self.get_rope_func(**rope_index_kwargs)
|
|
|
|
if "position_ids" not in batch or batch["position_ids"].dim() != 3:
|
|
raise ValueError("Qwen2VL requires 3D position ids for mrope.")
|
|
|
|
return batch
|
|
|
|
|
|
def bench_qwen(
|
|
model_name_or_path: str = "Qwen/Qwen2-VL-7B-Instruct",
|
|
batch_size: int = 1,
|
|
seq_length: int = 2048,
|
|
liger_kernel: bool = False,
|
|
deepspeed_stage: int = 3,
|
|
):
|
|
os.environ["LLAMABOARD_ENABLED"] = "true"
|
|
os.environ["LLAMABOARD_WORKDIR"] = "output/dummy_dir"
|
|
args = {
|
|
"model_name_or_path": model_name_or_path,
|
|
"enable_liger_kernel": liger_kernel,
|
|
"stage": "sft",
|
|
"do_train": True,
|
|
"finetuning_type": "full",
|
|
"dataset": "alpaca_en_demo",
|
|
"template": "qwen2_vl",
|
|
"cutoff_len": seq_length,
|
|
"output_dir": "output/dummy_dir",
|
|
"logging_steps": 10,
|
|
"save_strategy": "no",
|
|
"save_only_model": True,
|
|
"overwrite_output_dir": True,
|
|
"per_device_train_batch_size": batch_size,
|
|
"max_steps": 1000,
|
|
"bf16": True,
|
|
"include_num_input_tokens_seen": True,
|
|
"report_to": "none",
|
|
}
|
|
if deepspeed_stage in [2, 3]:
|
|
args["deepspeed"] = f"examples/deepspeed/ds_z{deepspeed_stage}_config.json"
|
|
|
|
model_args, _, training_args, finetuning_args, _ = get_train_args(args)
|
|
tokenizer_module = load_tokenizer(model_args)
|
|
tokenizer = tokenizer_module["tokenizer"]
|
|
trainset = DummyDataset(size=100000, seq_length=seq_length, processor=tokenizer_module["processor"])
|
|
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
|
data_collator = MultiModalDataCollatorForSeq2Seq(
|
|
tokenizer=tokenizer, model=model, pad_to_multiple_of=8, label_pad_token_id=IGNORE_INDEX
|
|
)
|
|
|
|
trainer = CustomSeq2SeqTrainer(
|
|
model=model,
|
|
args=training_args,
|
|
finetuning_args=finetuning_args,
|
|
data_collator=data_collator,
|
|
callbacks=[LogCallback()],
|
|
train_dataset=trainset,
|
|
**tokenizer_module,
|
|
)
|
|
trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire(bench_qwen)
|