mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-14 19:06:26 +08:00
129 lines
5.6 KiB
Python
129 lines
5.6 KiB
Python
import json
|
|
import os
|
|
from types import MethodType
|
|
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
from transformers import Trainer
|
|
|
|
from ...extras.logging import get_logger
|
|
from ..utils import create_custom_optimzer, create_custom_scheduler
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import PreTrainedModel, ProcessorMixin
|
|
from transformers.trainer import PredictionOutput
|
|
|
|
from ...hparams import FinetuningArguments
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
class PairwiseTrainer(Trainer):
|
|
r"""
|
|
Inherits Trainer to compute pairwise loss.
|
|
"""
|
|
|
|
def __init__(
|
|
self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs
|
|
) -> None:
|
|
super().__init__(**kwargs)
|
|
self.finetuning_args = finetuning_args
|
|
self.processor = processor
|
|
self.can_return_loss = True # override property to return eval_loss
|
|
if finetuning_args.use_badam:
|
|
from badam import clip_grad_norm_for_sparse_tensor
|
|
|
|
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
|
|
|
def create_optimizer(self) -> "torch.optim.Optimizer":
|
|
if self.optimizer is None:
|
|
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
|
return super().create_optimizer()
|
|
|
|
def create_scheduler(
|
|
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
|
) -> "torch.optim.lr_scheduler.LRScheduler":
|
|
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
|
return super().create_scheduler(num_training_steps, optimizer)
|
|
|
|
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
|
|
super()._save(output_dir, state_dict)
|
|
if self.processor is not None:
|
|
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
|
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
|
|
|
def compute_loss(
|
|
self, model: "PreTrainedModel", inputs: Dict[str, torch.Tensor], return_outputs: bool = False
|
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]]]:
|
|
r"""
|
|
Computes pairwise loss. The first n examples are chosen and the last n examples are rejected.
|
|
|
|
Subclass and override to inject custom behavior.
|
|
|
|
Note that the first element will be removed from the output tuple.
|
|
See: https://github.com/huggingface/transformers/blob/v4.39.1/src/transformers/trainer.py#L3777
|
|
"""
|
|
# Compute rewards
|
|
_, _, values = model(**inputs, output_hidden_states=True, return_dict=True)
|
|
|
|
unwrapped_model: "PreTrainedModel" = self.accelerator.unwrap_model(self.model)
|
|
if getattr(unwrapped_model.config, "model_type", None) == "chatglm":
|
|
values = torch.transpose(values, 0, 1)
|
|
|
|
# Split the inputs and rewards into two parts, chosen and rejected
|
|
batch_size = inputs["input_ids"].size(0) // 2
|
|
chosen_input_ids, rejected_input_ids = inputs["input_ids"][:batch_size], inputs["input_ids"][batch_size:]
|
|
chosen_rewards, rejected_rewards = values[:batch_size], values[batch_size:]
|
|
chosen_scores, rejected_scores = [], []
|
|
|
|
# Compute pairwise loss. Only backprop on the different tokens before padding
|
|
# Inspired by: https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/reward_model.py
|
|
loss = 0
|
|
for i in range(batch_size):
|
|
chosen_length = (chosen_input_ids[i] != self.tokenizer.pad_token_id).nonzero()[-1] + 1
|
|
rejected_length = (rejected_input_ids[i] != self.tokenizer.pad_token_id).nonzero()[-1] + 1
|
|
check_divergence = (chosen_input_ids[i] != rejected_input_ids[i]).nonzero()
|
|
|
|
if len(check_divergence) == 0:
|
|
end_index = chosen_length
|
|
div_index = end_index - 1
|
|
else:
|
|
end_index = max(chosen_length, rejected_length)
|
|
div_index = check_divergence[0]
|
|
|
|
assert div_index > 0
|
|
chosen_trunc_rewards = chosen_rewards[i, div_index:end_index]
|
|
rejected_trunc_rewards = rejected_rewards[i, div_index:end_index]
|
|
if return_outputs: # use the score on the last token except pad token for inference
|
|
chosen_scores.append(chosen_rewards[i, chosen_length - 1])
|
|
rejected_scores.append(rejected_rewards[i, rejected_length - 1])
|
|
loss += -torch.nn.functional.logsigmoid(chosen_trunc_rewards - rejected_trunc_rewards).mean()
|
|
|
|
loss = loss / batch_size
|
|
if return_outputs:
|
|
chosen_scores, rejected_scores = torch.stack(chosen_scores), torch.stack(rejected_scores)
|
|
return loss, [loss, chosen_scores, rejected_scores]
|
|
|
|
return loss
|
|
|
|
def save_predictions(self, predict_results: "PredictionOutput") -> None:
|
|
r"""
|
|
Saves model predictions to `output_dir`.
|
|
|
|
A custom behavior that not contained in Seq2SeqTrainer.
|
|
"""
|
|
if not self.is_world_process_zero():
|
|
return
|
|
|
|
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
|
|
logger.info(f"Saving prediction results to {output_prediction_file}")
|
|
chosen_scores, rejected_scores = predict_results.predictions
|
|
|
|
with open(output_prediction_file, "w", encoding="utf-8") as writer:
|
|
res: List[str] = []
|
|
for c_score, r_score in zip(chosen_scores, rejected_scores):
|
|
res.append(json.dumps({"chosen": round(float(c_score), 2), "rejected": round(float(r_score), 2)}))
|
|
writer.write("\n".join(res))
|