mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-04 20:52:59 +08:00
* fix llamapro script * change year Former-commit-id: e2dc5b952aa22835d5220ba624f44676138b65ac
88 lines
3.0 KiB
Python
88 lines
3.0 KiB
Python
# Copyright 2025 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from dataclasses import asdict, dataclass, field
|
|
from typing import Any, Dict, Optional
|
|
|
|
from transformers import GenerationConfig
|
|
|
|
|
|
@dataclass
|
|
class GeneratingArguments:
|
|
r"""
|
|
Arguments pertaining to specify the decoding parameters.
|
|
"""
|
|
|
|
do_sample: bool = field(
|
|
default=True,
|
|
metadata={"help": "Whether or not to use sampling, use greedy decoding otherwise."},
|
|
)
|
|
temperature: float = field(
|
|
default=0.95,
|
|
metadata={"help": "The value used to modulate the next token probabilities."},
|
|
)
|
|
top_p: float = field(
|
|
default=0.7,
|
|
metadata={
|
|
"help": "The smallest set of most probable tokens with probabilities that add up to top_p or higher are kept."
|
|
},
|
|
)
|
|
top_k: int = field(
|
|
default=50,
|
|
metadata={"help": "The number of highest probability vocabulary tokens to keep for top-k filtering."},
|
|
)
|
|
num_beams: int = field(
|
|
default=1,
|
|
metadata={"help": "Number of beams for beam search. 1 means no beam search."},
|
|
)
|
|
max_length: int = field(
|
|
default=1024,
|
|
metadata={"help": "The maximum length the generated tokens can have. It can be overridden by max_new_tokens."},
|
|
)
|
|
max_new_tokens: int = field(
|
|
default=1024,
|
|
metadata={"help": "The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt."},
|
|
)
|
|
repetition_penalty: float = field(
|
|
default=1.0,
|
|
metadata={"help": "The parameter for repetition penalty. 1.0 means no penalty."},
|
|
)
|
|
length_penalty: float = field(
|
|
default=1.0,
|
|
metadata={"help": "Exponential penalty to the length that is used with beam-based generation."},
|
|
)
|
|
default_system: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Default system message to use in chat completion."},
|
|
)
|
|
skip_special_tokens: bool = field(
|
|
default=True,
|
|
metadata={"help": "Whether or not to remove special tokens in the decoding."},
|
|
)
|
|
|
|
def to_dict(self, obey_generation_config: bool = False) -> Dict[str, Any]:
|
|
args = asdict(self)
|
|
if args.get("max_new_tokens", -1) > 0:
|
|
args.pop("max_length", None)
|
|
else:
|
|
args.pop("max_new_tokens", None)
|
|
|
|
if obey_generation_config:
|
|
generation_config = GenerationConfig()
|
|
for key in list(args.keys()):
|
|
if not hasattr(generation_config, key):
|
|
args.pop(key)
|
|
|
|
return args
|