mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-04 04:32:50 +08:00
803 lines
19 KiB
Python
803 lines
19 KiB
Python
import tiktoken
|
||
from dataclasses import dataclass
|
||
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
||
|
||
from llmtuner.extras.logging import get_logger
|
||
|
||
if TYPE_CHECKING:
|
||
from transformers import PreTrainedTokenizer
|
||
|
||
|
||
logger = get_logger(__name__)
|
||
|
||
|
||
@dataclass
|
||
class Template:
|
||
|
||
prefix: List[Union[str, Dict[str, str]]]
|
||
prompt: List[Union[str, Dict[str, str]]]
|
||
system: str
|
||
sep: List[Union[str, Dict[str, str]]]
|
||
stop_words: List[str]
|
||
use_history: bool
|
||
efficient_eos: bool
|
||
replace_eos: bool
|
||
|
||
def encode_oneturn(
|
||
self,
|
||
tokenizer: "PreTrainedTokenizer",
|
||
query: str,
|
||
resp: str,
|
||
history: Optional[List[Tuple[str, str]]] = None,
|
||
system: Optional[str] = None
|
||
) -> Tuple[List[int], List[int]]:
|
||
r"""
|
||
Returns a single pair of token ids representing prompt and response respectively.
|
||
"""
|
||
system, history = self._format(query, resp, history, system)
|
||
encoded_pairs = self._encode(tokenizer, system, history)
|
||
prompt_ids = []
|
||
for query_ids, resp_ids in encoded_pairs[:-1]:
|
||
prompt_ids = prompt_ids + query_ids + resp_ids
|
||
prompt_ids = prompt_ids + encoded_pairs[-1][0]
|
||
answer_ids = encoded_pairs[-1][1]
|
||
return prompt_ids, answer_ids
|
||
|
||
def encode_multiturn(
|
||
self,
|
||
tokenizer: "PreTrainedTokenizer",
|
||
query: str,
|
||
resp: str,
|
||
history: Optional[List[Tuple[str, str]]] = None,
|
||
system: Optional[str] = None
|
||
) -> List[Tuple[List[int], List[int]]]:
|
||
r"""
|
||
Returns multiple pairs of token ids representing prompts and responses respectively.
|
||
"""
|
||
system, history = self._format(query, resp, history, system)
|
||
encoded_pairs = self._encode(tokenizer, system, history)
|
||
return encoded_pairs
|
||
|
||
def _format(
|
||
self,
|
||
query: str,
|
||
resp: str,
|
||
history: Optional[List[Tuple[str, str]]] = None,
|
||
system: Optional[str] = None
|
||
) -> Tuple[str, List[Tuple[str, str]]]:
|
||
r"""
|
||
Aligns inputs to the standard format.
|
||
"""
|
||
system = system or self.system # use system if provided
|
||
history = history if (history and self.use_history) else []
|
||
history = history + [(query, resp)]
|
||
return system, history
|
||
|
||
def _get_special_ids(
|
||
self,
|
||
tokenizer: "PreTrainedTokenizer"
|
||
) -> Tuple[List[int], List[int]]:
|
||
if tokenizer.bos_token_id is not None and getattr(tokenizer, "add_bos_token", True):
|
||
bos_ids = [tokenizer.bos_token_id]
|
||
else: # baichuan, gpt2, qwen, yi models have no bos token
|
||
bos_ids = []
|
||
|
||
if tokenizer.eos_token_id is None:
|
||
raise ValueError("EOS token is required.")
|
||
|
||
if self.efficient_eos:
|
||
eos_ids = []
|
||
else:
|
||
eos_ids = [tokenizer.eos_token_id]
|
||
|
||
return bos_ids, eos_ids
|
||
|
||
def _encode(
|
||
self,
|
||
tokenizer: "PreTrainedTokenizer",
|
||
system: str,
|
||
history: List[Tuple[str, str]]
|
||
) -> List[Tuple[List[int], List[int]]]:
|
||
r"""
|
||
Encodes formatted inputs to pairs of token ids.
|
||
Turn 0: bos + prefix + sep + query resp + eos
|
||
Turn t: sep + bos + query resp + eos
|
||
"""
|
||
bos_ids, eos_ids = self._get_special_ids(tokenizer)
|
||
sep_ids = self._convert_inputs_to_ids(tokenizer, context=self.sep)
|
||
encoded_pairs = []
|
||
for turn_idx, (query, resp) in enumerate(history):
|
||
if turn_idx == 0:
|
||
prefix_ids = self._convert_inputs_to_ids(tokenizer, context=self.prefix, system=system)
|
||
if len(prefix_ids) != 0: # has prefix
|
||
prefix_ids = bos_ids + prefix_ids + sep_ids
|
||
else:
|
||
prefix_ids = bos_ids
|
||
else:
|
||
prefix_ids = sep_ids + bos_ids
|
||
|
||
query_ids = self._convert_inputs_to_ids(tokenizer, context=self.prompt, query=query, idx=str(turn_idx+1))
|
||
resp_ids = self._convert_inputs_to_ids(tokenizer, context=[resp])
|
||
encoded_pairs.append((prefix_ids + query_ids, resp_ids + eos_ids))
|
||
return encoded_pairs
|
||
|
||
def _convert_inputs_to_ids(
|
||
self,
|
||
tokenizer: "PreTrainedTokenizer",
|
||
context: List[Union[str, Dict[str, str]]],
|
||
system: Optional[str] = None,
|
||
query: Optional[str] = None,
|
||
idx: Optional[str] = None
|
||
) -> List[int]:
|
||
r"""
|
||
Converts context to token ids.
|
||
"""
|
||
if isinstance(getattr(tokenizer, "tokenizer", None), tiktoken.Encoding): # for tiktoken tokenizer (Qwen)
|
||
kwargs = dict(allowed_special="all")
|
||
else:
|
||
kwargs = dict(add_special_tokens=False)
|
||
|
||
token_ids = []
|
||
for elem in context:
|
||
if isinstance(elem, str):
|
||
elem = elem.replace("{{system}}", system, 1) if system is not None else elem
|
||
elem = elem.replace("{{query}}", query, 1) if query is not None else elem
|
||
elem = elem.replace("{{idx}}", idx, 1) if idx is not None else elem
|
||
if len(elem) != 0:
|
||
token_ids = token_ids + tokenizer.encode(elem, **kwargs)
|
||
elif isinstance(elem, dict):
|
||
token_ids = token_ids + [tokenizer.convert_tokens_to_ids(elem.get("token"))]
|
||
else:
|
||
raise ValueError("Input must be string or dict[str, str], got {}".format(type(elem)))
|
||
|
||
return token_ids
|
||
|
||
|
||
@dataclass
|
||
class Llama2Template(Template):
|
||
|
||
def _encode(
|
||
self,
|
||
tokenizer: "PreTrainedTokenizer",
|
||
system: str,
|
||
history: List[Tuple[str, str]]
|
||
) -> List[Tuple[List[int], List[int]]]:
|
||
r"""
|
||
Encodes formatted inputs to pairs of token ids.
|
||
Turn 0: bos + prefix + query resp + eos
|
||
Turn t: bos + query resp + eos
|
||
"""
|
||
bos_ids, eos_ids = self._get_special_ids(tokenizer)
|
||
encoded_pairs = []
|
||
for turn_idx, (query, resp) in enumerate(history):
|
||
if turn_idx == 0: # llama2 template has no sep_ids
|
||
query = self.prefix[0].replace("{{system}}", system) + query
|
||
query_ids = self._convert_inputs_to_ids(tokenizer, context=self.prompt, query=query)
|
||
resp_ids = self._convert_inputs_to_ids(tokenizer, context=[resp])
|
||
encoded_pairs.append((bos_ids + query_ids, resp_ids + eos_ids))
|
||
return encoded_pairs
|
||
|
||
|
||
templates: Dict[str, Template] = {}
|
||
|
||
|
||
def register_template(
|
||
name: str,
|
||
prefix: List[Union[str, Dict[str, str]]],
|
||
prompt: List[Union[str, Dict[str, str]]],
|
||
system: str,
|
||
sep: List[Union[str, Dict[str, str]]],
|
||
stop_words: Optional[List[str]] = [],
|
||
use_history: Optional[bool] = True,
|
||
efficient_eos: Optional[bool] = False,
|
||
replace_eos: Optional[bool] = False
|
||
) -> None:
|
||
template_class = Llama2Template if name.startswith("llama2") else Template
|
||
templates[name] = template_class(
|
||
prefix=prefix,
|
||
prompt=prompt,
|
||
system=system,
|
||
sep=sep,
|
||
stop_words=stop_words,
|
||
use_history=use_history,
|
||
efficient_eos=efficient_eos,
|
||
replace_eos=replace_eos
|
||
)
|
||
|
||
|
||
def get_template_and_fix_tokenizer(
|
||
name: str,
|
||
tokenizer: "PreTrainedTokenizer"
|
||
) -> Template:
|
||
if tokenizer.eos_token_id is None:
|
||
tokenizer.eos_token = "<|endoftext|>"
|
||
logger.info("Add eos token: {}".format(tokenizer.eos_token))
|
||
|
||
if tokenizer.pad_token_id is None:
|
||
tokenizer.pad_token = tokenizer.eos_token
|
||
logger.info("Add pad token: {}".format(tokenizer.pad_token))
|
||
|
||
if name is None: # for pre-training
|
||
return None
|
||
|
||
template = templates.get(name, None)
|
||
assert template is not None, "Template {} does not exist.".format(name)
|
||
|
||
stop_words = template.stop_words
|
||
if template.replace_eos:
|
||
if not stop_words:
|
||
raise ValueError("Stop words are required to replace the EOS token.")
|
||
|
||
tokenizer.eos_token = stop_words[0]
|
||
stop_words = stop_words[1:]
|
||
logger.info("Replace eos token: {}".format(tokenizer.eos_token))
|
||
|
||
if stop_words:
|
||
tokenizer.add_special_tokens(
|
||
dict(additional_special_tokens=stop_words),
|
||
replace_additional_special_tokens=False
|
||
)
|
||
logger.info("Add {} to stop words.".format(",".join(stop_words)))
|
||
|
||
return template
|
||
|
||
|
||
register_template(
|
||
name="alpaca",
|
||
prefix=[
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
"### Instruction:\n{{query}}\n\n### Response:\n"
|
||
],
|
||
system=(
|
||
"Below is an instruction that describes a task. "
|
||
"Write a response that appropriately completes the request."
|
||
),
|
||
sep=[
|
||
"\n\n"
|
||
]
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="aquila",
|
||
prefix=[
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
"Human: {{query}}###Assistant:"
|
||
],
|
||
system=(
|
||
"A chat between a curious human and an artificial intelligence assistant. "
|
||
"The assistant gives helpful, detailed, and polite answers to the human's questions."
|
||
),
|
||
sep=[
|
||
"###"
|
||
],
|
||
stop_words=[
|
||
"</s>"
|
||
],
|
||
efficient_eos=True
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="baichuan",
|
||
prefix=[
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
{"token": "<reserved_102>"}, # user token
|
||
"{{query}}",
|
||
{"token": "<reserved_103>"} # assistant token
|
||
],
|
||
system="",
|
||
sep=[],
|
||
efficient_eos=True
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="baichuan2",
|
||
prefix=[
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
{"token": "<reserved_106>"}, # user token
|
||
"{{query}}",
|
||
{"token": "<reserved_107>"} # assistant token
|
||
],
|
||
system="",
|
||
sep=[],
|
||
efficient_eos=True
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="belle",
|
||
prefix=[
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
"Human: {{query}}\n\nBelle: "
|
||
],
|
||
system="",
|
||
sep=[
|
||
"\n\n"
|
||
]
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="bluelm",
|
||
prefix=[
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
{"token": "[|Human|]:"},
|
||
"{{query}}",
|
||
{"token": "[|AI|]:"}
|
||
],
|
||
system="",
|
||
sep=[]
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="chatglm2",
|
||
prefix=[
|
||
{"token": "[gMASK]"},
|
||
{"token": "sop"},
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
"[Round {{idx}}]\n\n问:{{query}}\n\n答:"
|
||
],
|
||
system="",
|
||
sep=[
|
||
"\n\n"
|
||
],
|
||
efficient_eos=True
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="chatglm3",
|
||
prefix=[
|
||
{"token": "[gMASK]"},
|
||
{"token": "sop"},
|
||
{"token": "<|system|>"},
|
||
"\n",
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
{"token": "<|user|>"},
|
||
"\n",
|
||
"{{query}}",
|
||
{"token": "<|assistant|>"},
|
||
"\n" # add an extra newline to avoid error in ChatGLM's process_response method
|
||
],
|
||
system=(
|
||
"You are ChatGLM3, a large language model trained by Zhipu.AI. "
|
||
"Follow the user's instructions carefully. Respond using markdown."
|
||
),
|
||
sep=[],
|
||
stop_words=[
|
||
"<|user|>",
|
||
"<|observation|>"
|
||
],
|
||
efficient_eos=True
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="chatglm3_raw", # the raw template for tool tuning
|
||
prefix=[
|
||
{"token": "[gMASK]"},
|
||
{"token": "sop"},
|
||
{"token": "<|system|>"},
|
||
"\n",
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
{"token": "<|user|>"},
|
||
"\n",
|
||
"{{query}}",
|
||
{"token": "<|assistant|>"}
|
||
],
|
||
system=(
|
||
"You are ChatGLM3, a large language model trained by Zhipu.AI. "
|
||
"Follow the user's instructions carefully. Respond using markdown."
|
||
),
|
||
sep=[],
|
||
stop_words=[
|
||
"<|user|>",
|
||
"<|observation|>"
|
||
],
|
||
efficient_eos=True
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="codegeex2",
|
||
prefix=[
|
||
{"token": "[gMASK]"},
|
||
{"token": "sop"},
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
"{{query}}"
|
||
],
|
||
system="",
|
||
sep=[]
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="deepseek",
|
||
prefix=[
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
"User: {{query}}\n\nAssistant:"
|
||
],
|
||
system="",
|
||
sep=[]
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="deepseekcoder",
|
||
prefix=[
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
"### Instruction:\n{{query}}\n### Response:\n"
|
||
],
|
||
system=(
|
||
"You are an AI programming assistant, utilizing the Deepseek Coder model, "
|
||
"developed by Deepseek Company, and you only answer questions related to computer science. "
|
||
"For politically sensitive questions, security and privacy issues, "
|
||
"and other non-computer science questions, you will refuse to answer\n"
|
||
),
|
||
sep=[
|
||
"\n",
|
||
{"token": "<|EOT|>"},
|
||
"\n"
|
||
],
|
||
stop_words=[
|
||
"<|EOT|>"
|
||
],
|
||
efficient_eos=True
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="default",
|
||
prefix=[
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
"Human: {{query}}\nAssistant:"
|
||
],
|
||
system=(
|
||
"A chat between a curious user and an artificial intelligence assistant. "
|
||
"The assistant gives helpful, detailed, and polite answers to the user's questions."
|
||
),
|
||
sep=[
|
||
"\n"
|
||
]
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="falcon",
|
||
prefix=[
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
"User: {{query}}\nFalcon:"
|
||
],
|
||
system="",
|
||
sep=[
|
||
"\n"
|
||
],
|
||
efficient_eos=True
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="intern",
|
||
prefix=[
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
"<|User|>:{{query}}",
|
||
{"token": "<eoh>"},
|
||
"\n<|Bot|>:"
|
||
],
|
||
system="",
|
||
sep=[
|
||
{"token": "<eoa>"},
|
||
"\n"
|
||
],
|
||
stop_words=[
|
||
"<eoa>"
|
||
],
|
||
efficient_eos=True
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="llama2",
|
||
prefix=[
|
||
"<<SYS>>\n{{system}}\n<</SYS>>\n\n"
|
||
],
|
||
prompt=[
|
||
"[INST] {{query}} [/INST]"
|
||
],
|
||
system=(
|
||
"You are a helpful, respectful and honest assistant. "
|
||
"Always answer as helpfully as possible, while being safe. "
|
||
"Your answers should not include any harmful, unethical, "
|
||
"racist, sexist, toxic, dangerous, or illegal content. "
|
||
"Please ensure that your responses are socially unbiased and positive in nature.\n\n"
|
||
"If a question does not make any sense, or is not factually coherent, "
|
||
"explain why instead of answering something not correct. "
|
||
"If you don't know the answer to a question, please don't share false information."
|
||
),
|
||
sep=[]
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="llama2_zh",
|
||
prefix=[
|
||
"<<SYS>>\n{{system}}\n<</SYS>>\n\n"
|
||
],
|
||
prompt=[
|
||
"[INST] {{query}} [/INST]"
|
||
],
|
||
system="You are a helpful assistant. 你是一个乐于助人的助手。",
|
||
sep=[]
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="mistral",
|
||
prefix=[
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
"[INST] {{query}} [/INST]"
|
||
],
|
||
system="",
|
||
sep=[]
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="openchat",
|
||
prefix=[
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
"GPT4 Correct User: {{query}}",
|
||
{"token": "<|end_of_turn|>"},
|
||
"GPT4 Correct Assistant:"
|
||
],
|
||
system="",
|
||
sep=[
|
||
{"token": "<|end_of_turn|>"}
|
||
],
|
||
stop_words=[
|
||
"<|end_of_turn|>"
|
||
],
|
||
efficient_eos=True
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="qwen",
|
||
prefix=[
|
||
"<|im_start|>system\n{{system}}<|im_end|>"
|
||
],
|
||
prompt=[
|
||
"<|im_start|>user\n{{query}}<|im_end|>\n<|im_start|>assistant\n"
|
||
],
|
||
system="You are a helpful assistant.",
|
||
sep=[
|
||
"\n"
|
||
],
|
||
stop_words=[
|
||
"<|im_end|>"
|
||
],
|
||
replace_eos=True
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="starchat",
|
||
prefix=[
|
||
{"token": "<|system|>"},
|
||
"\n{{system}}",
|
||
],
|
||
prompt=[
|
||
{"token": "<|user|>"},
|
||
"\n{{query}}",
|
||
{"token": "<|end|>"},
|
||
"\n",
|
||
{"token": "<|assistant|>"}
|
||
],
|
||
system="",
|
||
sep=[
|
||
{"token": "<|end|>"},
|
||
"\n"
|
||
],
|
||
stop_words=[
|
||
"<|end|>"
|
||
],
|
||
efficient_eos=True
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="vanilla",
|
||
prefix=[],
|
||
prompt=[
|
||
"{{query}}"
|
||
],
|
||
system="",
|
||
sep=[],
|
||
use_history=False
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="vicuna",
|
||
prefix=[
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
"USER: {{query}} ASSISTANT:"
|
||
],
|
||
system=(
|
||
"A chat between a curious user and an artificial intelligence assistant. "
|
||
"The assistant gives helpful, detailed, and polite answers to the user's questions."
|
||
),
|
||
sep=[]
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="xuanyuan",
|
||
prefix=[
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
"Human: {{query}} Assistant:"
|
||
],
|
||
system=(
|
||
"以下是用户和人工智能助手之间的对话。用户以Human开头,人工智能助手以Assistant开头,"
|
||
"会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与与不道德、"
|
||
"不安全、有争议、政治敏感等相关的话题、问题和指示。\n"
|
||
),
|
||
sep=[]
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="xverse",
|
||
prefix=[
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
"Human: {{query}}\n\nAssistant: "
|
||
],
|
||
system="",
|
||
sep=[]
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="yayi",
|
||
prefix=[
|
||
{"token": "<|System|>"},
|
||
":\n{{system}}"
|
||
],
|
||
prompt=[
|
||
{"token": "<|Human|>"},
|
||
":\n{{query}}\n\n",
|
||
{"token": "<|YaYi|>"},
|
||
":"
|
||
],
|
||
system=(
|
||
"You are a helpful, respectful and honest assistant named YaYi "
|
||
"developed by Beijing Wenge Technology Co.,Ltd. "
|
||
"Always answer as helpfully as possible, while being safe. "
|
||
"Your answers should not include any harmful, unethical, "
|
||
"racist, sexist, toxic, dangerous, or illegal content. "
|
||
"Please ensure that your responses are socially unbiased and positive in nature.\n\n"
|
||
"If a question does not make any sense, or is not factually coherent, "
|
||
"explain why instead of answering something not correct. "
|
||
"If you don't know the answer to a question, please don't share false information."
|
||
),
|
||
sep=[
|
||
"\n\n"
|
||
],
|
||
stop_words=[
|
||
"<|End|>"
|
||
]
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="yi",
|
||
prefix=[
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
"<|im_start|>user\n{{query}}<|im_end|>\n<|im_start|>assistant\n"
|
||
],
|
||
system="",
|
||
sep=[
|
||
"\n"
|
||
],
|
||
stop_words=[
|
||
"<|im_end|>"
|
||
],
|
||
replace_eos=True
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="yuan",
|
||
prefix=[
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
"{{query}}",
|
||
{"token": "<sep>"}
|
||
],
|
||
system="",
|
||
sep=[
|
||
"\n"
|
||
],
|
||
stop_words=[
|
||
"<eod>"
|
||
],
|
||
replace_eos=True
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="zephyr",
|
||
prefix=[
|
||
"<|system|>\n{{system}}</s>",
|
||
],
|
||
prompt=[
|
||
"<|user|>\n{{query}}</s><|assistant|>"
|
||
],
|
||
system="You are a friendly chatbot who always responds in the style of a pirate",
|
||
sep=[]
|
||
)
|
||
|
||
|
||
register_template(
|
||
name="ziya",
|
||
prefix=[
|
||
"{{system}}"
|
||
],
|
||
prompt=[
|
||
{"token": "<human>"},
|
||
":{{query}}\n",
|
||
{"token": "<bot>"},
|
||
":"
|
||
],
|
||
system="",
|
||
sep=[
|
||
"\n"
|
||
]
|
||
)
|