mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-02 19:52:50 +08:00
311 lines
11 KiB
Python
311 lines
11 KiB
Python
from typing import TYPE_CHECKING, Dict
|
|
|
|
from transformers.trainer_utils import SchedulerType
|
|
|
|
from ...extras.constants import TRAINING_STAGES
|
|
from ...extras.packages import is_gradio_available
|
|
from ..common import DEFAULT_DATA_DIR, autoset_packing, list_adapters, list_dataset
|
|
from ..components.data import create_preview_box
|
|
|
|
|
|
if is_gradio_available():
|
|
import gradio as gr
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from gradio.components import Component
|
|
|
|
from ..engine import Engine
|
|
|
|
|
|
def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
|
|
input_elems = engine.manager.get_base_elems()
|
|
elem_dict = dict()
|
|
|
|
with gr.Row():
|
|
training_stage = gr.Dropdown(
|
|
choices=list(TRAINING_STAGES.keys()), value=list(TRAINING_STAGES.keys())[0], scale=1
|
|
)
|
|
dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=1)
|
|
dataset = gr.Dropdown(multiselect=True, allow_custom_value=True, scale=4)
|
|
preview_elems = create_preview_box(dataset_dir, dataset)
|
|
|
|
input_elems.update({training_stage, dataset_dir, dataset})
|
|
elem_dict.update(dict(training_stage=training_stage, dataset_dir=dataset_dir, dataset=dataset, **preview_elems))
|
|
|
|
with gr.Row():
|
|
learning_rate = gr.Textbox(value="5e-5")
|
|
num_train_epochs = gr.Textbox(value="3.0")
|
|
max_grad_norm = gr.Textbox(value="1.0")
|
|
max_samples = gr.Textbox(value="100000")
|
|
compute_type = gr.Dropdown(choices=["fp16", "bf16", "fp32", "pure_bf16"], value="fp16")
|
|
|
|
input_elems.update({learning_rate, num_train_epochs, max_grad_norm, max_samples, compute_type})
|
|
elem_dict.update(
|
|
dict(
|
|
learning_rate=learning_rate,
|
|
num_train_epochs=num_train_epochs,
|
|
max_grad_norm=max_grad_norm,
|
|
max_samples=max_samples,
|
|
compute_type=compute_type,
|
|
)
|
|
)
|
|
|
|
with gr.Row():
|
|
cutoff_len = gr.Slider(minimum=4, maximum=65536, value=1024, step=1)
|
|
batch_size = gr.Slider(minimum=1, maximum=1024, value=2, step=1)
|
|
gradient_accumulation_steps = gr.Slider(minimum=1, maximum=1024, value=8, step=1)
|
|
val_size = gr.Slider(minimum=0, maximum=1, value=0, step=0.001)
|
|
lr_scheduler_type = gr.Dropdown(choices=[scheduler.value for scheduler in SchedulerType], value="cosine")
|
|
|
|
input_elems.update({cutoff_len, batch_size, gradient_accumulation_steps, val_size, lr_scheduler_type})
|
|
elem_dict.update(
|
|
dict(
|
|
cutoff_len=cutoff_len,
|
|
batch_size=batch_size,
|
|
gradient_accumulation_steps=gradient_accumulation_steps,
|
|
val_size=val_size,
|
|
lr_scheduler_type=lr_scheduler_type,
|
|
)
|
|
)
|
|
|
|
with gr.Accordion(open=False) as extra_tab:
|
|
with gr.Row():
|
|
logging_steps = gr.Slider(minimum=1, maximum=1000, value=5, step=5)
|
|
save_steps = gr.Slider(minimum=10, maximum=5000, value=100, step=10)
|
|
warmup_steps = gr.Slider(minimum=0, maximum=5000, value=0, step=1)
|
|
neftune_alpha = gr.Slider(minimum=0, maximum=10, value=0, step=0.1)
|
|
optim = gr.Textbox(value="adamw_torch")
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
resize_vocab = gr.Checkbox()
|
|
packing = gr.Checkbox()
|
|
|
|
with gr.Column():
|
|
upcast_layernorm = gr.Checkbox()
|
|
use_llama_pro = gr.Checkbox()
|
|
|
|
with gr.Column():
|
|
shift_attn = gr.Checkbox()
|
|
report_to = gr.Checkbox()
|
|
|
|
input_elems.update(
|
|
{
|
|
logging_steps,
|
|
save_steps,
|
|
warmup_steps,
|
|
neftune_alpha,
|
|
optim,
|
|
resize_vocab,
|
|
packing,
|
|
upcast_layernorm,
|
|
use_llama_pro,
|
|
shift_attn,
|
|
report_to,
|
|
}
|
|
)
|
|
elem_dict.update(
|
|
dict(
|
|
extra_tab=extra_tab,
|
|
logging_steps=logging_steps,
|
|
save_steps=save_steps,
|
|
warmup_steps=warmup_steps,
|
|
neftune_alpha=neftune_alpha,
|
|
optim=optim,
|
|
resize_vocab=resize_vocab,
|
|
packing=packing,
|
|
upcast_layernorm=upcast_layernorm,
|
|
use_llama_pro=use_llama_pro,
|
|
shift_attn=shift_attn,
|
|
report_to=report_to,
|
|
)
|
|
)
|
|
|
|
with gr.Accordion(open=False) as freeze_tab:
|
|
with gr.Row():
|
|
freeze_trainable_layers = gr.Slider(minimum=-128, maximum=128, value=2, step=1)
|
|
freeze_trainable_modules = gr.Textbox(value="all")
|
|
freeze_extra_modules = gr.Textbox()
|
|
|
|
input_elems.update({freeze_trainable_layers, freeze_trainable_modules, freeze_extra_modules})
|
|
elem_dict.update(
|
|
dict(
|
|
freeze_tab=freeze_tab,
|
|
freeze_trainable_layers=freeze_trainable_layers,
|
|
freeze_trainable_modules=freeze_trainable_modules,
|
|
freeze_extra_modules=freeze_extra_modules,
|
|
)
|
|
)
|
|
|
|
with gr.Accordion(open=False) as lora_tab:
|
|
with gr.Row():
|
|
lora_rank = gr.Slider(minimum=1, maximum=1024, value=8, step=1)
|
|
lora_alpha = gr.Slider(minimum=1, maximum=2048, value=16, step=1)
|
|
lora_dropout = gr.Slider(minimum=0, maximum=1, value=0, step=0.01)
|
|
loraplus_lr_ratio = gr.Slider(minimum=0, maximum=64, value=0, step=0.01)
|
|
create_new_adapter = gr.Checkbox()
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=1):
|
|
use_rslora = gr.Checkbox()
|
|
use_dora = gr.Checkbox()
|
|
|
|
lora_target = gr.Textbox(scale=2)
|
|
additional_target = gr.Textbox(scale=2)
|
|
|
|
input_elems.update(
|
|
{
|
|
lora_rank,
|
|
lora_alpha,
|
|
lora_dropout,
|
|
loraplus_lr_ratio,
|
|
create_new_adapter,
|
|
use_rslora,
|
|
use_dora,
|
|
lora_target,
|
|
additional_target,
|
|
}
|
|
)
|
|
elem_dict.update(
|
|
dict(
|
|
lora_tab=lora_tab,
|
|
lora_rank=lora_rank,
|
|
lora_alpha=lora_alpha,
|
|
lora_dropout=lora_dropout,
|
|
loraplus_lr_ratio=loraplus_lr_ratio,
|
|
create_new_adapter=create_new_adapter,
|
|
use_rslora=use_rslora,
|
|
use_dora=use_dora,
|
|
lora_target=lora_target,
|
|
additional_target=additional_target,
|
|
)
|
|
)
|
|
|
|
with gr.Accordion(open=False) as rlhf_tab:
|
|
with gr.Row():
|
|
pref_beta = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.01)
|
|
pref_ftx = gr.Slider(minimum=0, maximum=10, value=0, step=0.01)
|
|
pref_loss = gr.Dropdown(choices=["sigmoid", "hinge", "ipo", "kto_pair", "orpo", "simpo"], value="sigmoid")
|
|
reward_model = gr.Dropdown(multiselect=True, allow_custom_value=True)
|
|
with gr.Column():
|
|
ppo_score_norm = gr.Checkbox()
|
|
ppo_whiten_rewards = gr.Checkbox()
|
|
|
|
input_elems.update({pref_beta, pref_ftx, pref_loss, reward_model, ppo_score_norm, ppo_whiten_rewards})
|
|
elem_dict.update(
|
|
dict(
|
|
rlhf_tab=rlhf_tab,
|
|
pref_beta=pref_beta,
|
|
pref_ftx=pref_ftx,
|
|
pref_loss=pref_loss,
|
|
reward_model=reward_model,
|
|
ppo_score_norm=ppo_score_norm,
|
|
ppo_whiten_rewards=ppo_whiten_rewards,
|
|
)
|
|
)
|
|
|
|
with gr.Accordion(open=False) as galore_tab:
|
|
with gr.Row():
|
|
use_galore = gr.Checkbox()
|
|
galore_rank = gr.Slider(minimum=1, maximum=1024, value=16, step=1)
|
|
galore_update_interval = gr.Slider(minimum=1, maximum=1024, value=200, step=1)
|
|
galore_scale = gr.Slider(minimum=0, maximum=1, value=0.25, step=0.01)
|
|
galore_target = gr.Textbox(value="all")
|
|
|
|
input_elems.update({use_galore, galore_rank, galore_update_interval, galore_scale, galore_target})
|
|
elem_dict.update(
|
|
dict(
|
|
galore_tab=galore_tab,
|
|
use_galore=use_galore,
|
|
galore_rank=galore_rank,
|
|
galore_update_interval=galore_update_interval,
|
|
galore_scale=galore_scale,
|
|
galore_target=galore_target,
|
|
)
|
|
)
|
|
|
|
with gr.Accordion(open=False) as badam_tab:
|
|
with gr.Row():
|
|
use_badam = gr.Checkbox()
|
|
badam_mode = gr.Dropdown(choices=["layer", "ratio"], value="layer")
|
|
badam_switch_mode = gr.Dropdown(choices=["ascending", "descending", "random", "fixed"], value="ascending")
|
|
badam_switch_interval = gr.Slider(minimum=1, maximum=1024, value=50, step=1)
|
|
badam_update_ratio = gr.Slider(minimum=0, maximum=1, value=0.05, step=0.01)
|
|
|
|
input_elems.update({use_badam, badam_mode, badam_switch_mode, badam_switch_interval, badam_update_ratio})
|
|
elem_dict.update(
|
|
dict(
|
|
badam_tab=badam_tab,
|
|
use_badam=use_badam,
|
|
badam_mode=badam_mode,
|
|
badam_switch_mode=badam_switch_mode,
|
|
badam_switch_interval=badam_switch_interval,
|
|
badam_update_ratio=badam_update_ratio,
|
|
)
|
|
)
|
|
|
|
with gr.Row():
|
|
cmd_preview_btn = gr.Button()
|
|
arg_save_btn = gr.Button()
|
|
arg_load_btn = gr.Button()
|
|
start_btn = gr.Button(variant="primary")
|
|
stop_btn = gr.Button(variant="stop")
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=3):
|
|
with gr.Row():
|
|
output_dir = gr.Textbox()
|
|
config_path = gr.Textbox()
|
|
|
|
with gr.Row():
|
|
resume_btn = gr.Checkbox(visible=False, interactive=False)
|
|
progress_bar = gr.Slider(visible=False, interactive=False)
|
|
|
|
with gr.Row():
|
|
output_box = gr.Markdown()
|
|
|
|
with gr.Column(scale=1):
|
|
loss_viewer = gr.Plot()
|
|
|
|
elem_dict.update(
|
|
dict(
|
|
cmd_preview_btn=cmd_preview_btn,
|
|
arg_save_btn=arg_save_btn,
|
|
arg_load_btn=arg_load_btn,
|
|
start_btn=start_btn,
|
|
stop_btn=stop_btn,
|
|
output_dir=output_dir,
|
|
config_path=config_path,
|
|
resume_btn=resume_btn,
|
|
progress_bar=progress_bar,
|
|
output_box=output_box,
|
|
loss_viewer=loss_viewer,
|
|
)
|
|
)
|
|
|
|
input_elems.update({output_dir, config_path})
|
|
output_elems = [output_box, progress_bar, loss_viewer]
|
|
|
|
cmd_preview_btn.click(engine.runner.preview_train, input_elems, output_elems, concurrency_limit=None)
|
|
arg_save_btn.click(engine.runner.save_args, input_elems, output_elems, concurrency_limit=None)
|
|
arg_load_btn.click(
|
|
engine.runner.load_args,
|
|
[engine.manager.get_elem_by_id("top.lang"), config_path],
|
|
list(input_elems) + [output_box],
|
|
concurrency_limit=None,
|
|
)
|
|
start_btn.click(engine.runner.run_train, input_elems, output_elems)
|
|
stop_btn.click(engine.runner.set_abort)
|
|
resume_btn.change(engine.runner.monitor, outputs=output_elems, concurrency_limit=None)
|
|
|
|
dataset_dir.change(list_dataset, [dataset_dir, training_stage], [dataset], queue=False)
|
|
training_stage.change(list_dataset, [dataset_dir, training_stage], [dataset], queue=False).then(
|
|
list_adapters,
|
|
[engine.manager.get_elem_by_id("top.model_name"), engine.manager.get_elem_by_id("top.finetuning_type")],
|
|
[reward_model],
|
|
queue=False,
|
|
).then(autoset_packing, [training_stage], [packing], queue=False)
|
|
|
|
return elem_dict
|